- Credit Ratings: The What and Why?
- EPA Regulations and Coal Plant Retirements

Bhala Mehendale, Director

January 10, 2012
What is a rating?

• Independent assessment of credit quality; forward-looking

• Letter representation of the likelihood of full and timely repayment over the life of a specific financial obligation

• AAA, AA, A, BBB …

• “+” and “-” to refine

• Based on issuer’s ability and willingness to pay on time

• Ability to pay - quantitative

• Willingness to pay - qualitative
A rating is NOT:

- Buy/sell or pricing recommendation
- Judgment or statement regarding any aspect of public or corporate policy
- Political statement in favor of or against a particular person, management or administration
- Dictate of what should be done or how a matter should be handled
Why do ratings and rating agencies matter?

- A bridge between issuer and investor
- Increased investor knowledge and acceptance
- Continuing oversight and surveillance
- Unbiased and independent assessment
- GENERALLY: Higher ratings = lower interest costs
Rating agency credit analysis

- Comprehensive review and assessment of obligor creditworthiness
 - Governance and management strategy
 - Assets and operations
 - Cost structure
 - Debt / legal structure
 - Financial performance
 - Customer profile and service area
Elements of credit analysis: Governance and management

- Strategic planning
- Written, adopted financial management policies:
 - Implemented? Followed? Fiscal discipline maintained even during downturns?
- Disclosure practices
- Tenure / experience
- Responses to economic variables

“Management’s experience and ability to design and implement a comprehensive strategic plan is important to an issuer’s rating, as is its ability to respond to unforeseen circumstances”

- Fitch Ratings U.S. Public Power Rating Criteria
Elements of credit analysis: Assets and operations

- Operating history
- Resource diversity
- Integrated resource planning
- Risk management

“Fitch analyzes the long-term strategies set forth in a utility’s integrated resource plan to determine if they are adequate and conservatively developed.”

- Fitch Ratings U.S. Public Power Rating Criteria
Elements of credit analysis: Revenue and cost structure

- Rate setting oversight
- Competitiveness and flexibility
- Adequacy and timeliness of recovery
- Diversity of revenue

“The power sales contracts between a wholesale power supplier and its distribution customers are among the most important factors supporting the credit rating of a wholesale power system”

“Fitch assesses management’s and the governing body’s willingness and ability to increase rates to ensure the measured, timely, and adequate recovery of total costs”

- Fitch Ratings U.S. Public Power Rating Criteria
Elements of credit analysis: Debt and legal structure

- Debt and capital plan
- Affordability / debt service coverage
- Security / subordination
- Variable rate exposure
- Swaps, derivatives, etc.

“key bond covenants are important to overall bondholder protection, though the degree to which they influence a rating varies.”

- Fitch Ratings U.S. Public Power Rating Criteria
Elements of credit analysis: Financial performance

- Past and future fiscal balance
- Revenue and expense composition
- Liquidity / cash flow
- Prudent reserves
- Use of non-recurring revenues
- Contingency planning
- Investment policies

“Fitch conducts an analysis of all significant public power information for member systems when reviewing joint-action agencies”

“Wholesale power suppliers generally have lower coverage levels than retail systems, as total wholesale costs are passed through to their members on a monthly basis.”

- Fitch Ratings U.S. Public Power Rating Criteria
Elements of credit analysis: Customer profile and service area

- Inter-entity relationships
- Service area and local demographics
- Diversity / concentration
- Growth prospects

“A utility’s ability to maintain a sound operating position, in spite of changing service area indicators, is an important rating consideration.”

“Fitch conducts an analysis of all significant public power information for member systems when reviewing joint-action agencies”

- Fitch Ratings U.S. Public Power Rating Criteria
2012 Outlook: U.S. Public Power and Electric Cooperative Sector

Powering through the haze
2012 Outlook: Key Sector Characteristics

- Essentiality of electric utility service
- Defined service area, with near monopolistic characteristics
- Local control over rate setting
- Predominately residential and small commercial customer base
- Relative cost advantage over investor-owned utilities
- Customers/ratepayers are the ultimate “stakeholders”
2012 Outlook: Key Issues

Outlook remains Stable

- Environmental Uncertainty Persists
- Willingness to raise rates tested
- Depressed Wholesale Power Prices
- Transfers Stable, So Far
- Nuclear Expansion on Hold
Environmental Rules

• Regulation versus Legislation
• Is legislation still a possibility
• Retire or Retrofit
Environmental Rules

EPA Regulatory Timeline
Trouble Ahead, Trouble Behind

- CAIR Phase I NOx
- CAIR Phase I SO2
- Xcel: 900 MW
- CAMR Vacated
- Exelon: 750 MW
- CAIR Remanded
- CAMR Phase I
- CCB Proposal
- Progress Carolinas: 1,500 MW
- Endangerment Finding
- 316(b) Phase II remanded
- 316(b) Rule Proposal
- FirstEnergy "Reduced Operations": 1,600 MW
- Transport Rule Proposed
- Tailoring Rule Issue
- TVA: 1,000 MW
- Transport Rule Finalized
- Tailoring Rule Step 2
- Effluent Guidelines Proposal
- HAPs Proposal
- 316(b) Rule
- Tailoring Rule Step 1
- Effluent Guidelines Rule
- Federal Legislative or Regional Carbon Initiatives?
- CCB Compliance
- 2008
- 2010
- 2012
- 2014
- 2016
- 2018

YOU ARE HERE!

Source: EPA; Announced Activity; Wood Mackenzie, North America Power Service

Coal Retirements
- SO2/NOx/PM2.5
- Hg/HAPs
- Water
- CO2
- CCB

FitchRatings
www.fitchratings.com
Environmental Rules

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>New or Evolving EPA Rules</th>
<th>Regulatory Timeline</th>
<th>Control Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO2</td>
<td>Cross State Air Pollution Rule (CSAPR)</td>
<td>Rule in 2011; effective in 2012 and 2014</td>
<td>Wet scrubber. Dry scrubber. (Flue gas desulfurization; FGD)</td>
</tr>
<tr>
<td>NOx</td>
<td>Cross State Air Pollution Rule (CSAPR)</td>
<td>Same as above</td>
<td>Selective Catalytic Reduction (SCR). Selective Non-catalytic Reduction (SNCR). Low-NOx Burners</td>
</tr>
<tr>
<td>Mercury (Hg) & other heavy metals</td>
<td>Mercury and Air Toxic Standards (MATS)</td>
<td>Released final rule in Dec 2011</td>
<td>Sorbent injection activated carbon. Co-benefits of FGD and SCR</td>
</tr>
<tr>
<td>Greenhouse gases, CO2</td>
<td>Tailoring Rule and New Source Review (NSR)</td>
<td>Rule effective Jan. 2, 2011. Must be considered in PSD permitting (new or renewals)</td>
<td>Power plant efficiency improvements (within the power plant perimeter)</td>
</tr>
<tr>
<td>Harm to fish from H2O intake</td>
<td>Clean Water Act, Section 316(b)</td>
<td>Rule released in March 2011 for water intake devices and expected in 2012 for thermal discharge</td>
<td>Fish screens. Closed loop cooling using towers</td>
</tr>
</tbody>
</table>
Top 10 States with At-Risk (<400MW and >40 yrs) Coal Units with No SOx Controls

<table>
<thead>
<tr>
<th>State</th>
<th>Total Statewide Capacity (MW)</th>
<th>Total Coal Capacity (MW)</th>
<th>At-Risk Capacity (MW)</th>
<th>Total (MW)</th>
<th>% of Total Statewide Capacity</th>
<th>% of Total Coal Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>WV</td>
<td>17,250</td>
<td>15,252</td>
<td>2,486</td>
<td>2,486</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>MO</td>
<td>22,460</td>
<td>13,087</td>
<td>2,976</td>
<td>2,976</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>MI</td>
<td>33,080</td>
<td>12,391</td>
<td>4,076</td>
<td>3,779</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>OH</td>
<td>36,462</td>
<td>22,937</td>
<td>7,076</td>
<td>3,777</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>IL</td>
<td>50,053</td>
<td>17,183</td>
<td>5,819</td>
<td>4,537</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>IN</td>
<td>30,990</td>
<td>20,398</td>
<td>5,465</td>
<td>2,738</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>SC</td>
<td>25,790</td>
<td>7,735</td>
<td>2,809</td>
<td>2,037</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>VA</td>
<td>25,833</td>
<td>5,751</td>
<td>3,160</td>
<td>1,987</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>NC</td>
<td>30,103</td>
<td>13,154</td>
<td>4,749</td>
<td>2,247</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>TN</td>
<td>23,207</td>
<td>10,011</td>
<td>6,348</td>
<td>1,485</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>295,228</td>
<td>137,899</td>
<td>44,964</td>
<td>28,049</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top 10 Owners of At-Risk Coal Units with No SOx Controls

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Total System Capacity (MW)</th>
<th>Total System Coal Capacity (MW)</th>
<th>At Risk Capacity (MW)</th>
<th>Total Capacity (MW)</th>
<th>% of Total System Capacity</th>
<th>% of Total Coal Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTE Energy Company</td>
<td>11,257</td>
<td>7,592</td>
<td>2,014</td>
<td>2,014</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>Ameren Corporation</td>
<td>17,977</td>
<td>10,384</td>
<td>2,998</td>
<td>2,609</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Edison International</td>
<td>12,841</td>
<td>8,862</td>
<td>2,313</td>
<td>1,631</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>FirstEnergy Corp.</td>
<td>18,995</td>
<td>15,345</td>
<td>4,264</td>
<td>2,229</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Duke Energy Corporation</td>
<td>32,056</td>
<td>12,988</td>
<td>5,454</td>
<td>3,247</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>American Electric Power Company, Inc.</td>
<td>32,618</td>
<td>20,076</td>
<td>4,023</td>
<td>3,109</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Dominion Resources, Inc.</td>
<td>21,469</td>
<td>7,743</td>
<td>2,709</td>
<td>1,568</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Progress Energy, Inc.</td>
<td>18,659</td>
<td>5,897</td>
<td>1,742</td>
<td>1,328</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>Tennessee Valley Authority</td>
<td>38,142</td>
<td>16,951</td>
<td>9,168</td>
<td>1,485</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Southern Company</td>
<td>40,976</td>
<td>19,628</td>
<td>6,950</td>
<td>1,475</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>244,990</td>
<td>125,466</td>
<td>41,635</td>
<td>20,695</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time to Retire I & II are available on Fitch’s website
Cost To Retrofit High: Costs Decline with Size of Units

Hypothetical Case
1. Added systems: scrubbers for SOx, burner modifications and selective catalytic reduction for NOx, and active carbon injection to reduce Hg.
2. Includes costs of equipment and installation.
3. Does not address greenhouse gas emissions, ash disposal, cooling water.

Source: Fitch Ratings. KW – kilowatt; SOx – sulfur oxides; NOx – nitrous oxides.
Environmental Rules

Economics of retrofitting a Bituminous Coal Unit

<table>
<thead>
<tr>
<th>Plant Size</th>
<th>100 MW</th>
<th>300 MW</th>
<th>500 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in Annual Operating Costs (%)</td>
<td>15–18</td>
<td>10–13</td>
<td>8–11</td>
</tr>
<tr>
<td>Capital Outlay for Equipment and Installation ($/KW)</td>
<td>1,200–1,250</td>
<td>1,025–1,075</td>
<td>750–800</td>
</tr>
<tr>
<td>Decline in the Available Capacity (%)</td>
<td>2–3</td>
<td>2–3</td>
<td>2–3</td>
</tr>
<tr>
<td>Increase in the Plant Heat Rate (%)</td>
<td>2–3</td>
<td>2–3</td>
<td>2–3</td>
</tr>
<tr>
<td>Present Value: Total Changes in Cash Flow due to Retrofit ($ Mil.)</td>
<td>(170–190)</td>
<td>(450–500)</td>
<td>(600–650)</td>
</tr>
<tr>
<td>Present Value of Cash Flow Changes ($ /KW)</td>
<td>(1,700–1,900)</td>
<td>(1,500–1,666)</td>
<td>(1,200–1,300)</td>
</tr>
</tbody>
</table>

KWs – Kilowatt.

Notes: Assumes an uncontrolled power plant burning bituminous coal. Discount rate of 10%; assumed life of 30 years. It includes a penalty for lost margin due to lower output and higher fuel costs with reduced plant efficiency (higher heat rate), as well as the costs of equipment and installation. Controls installed in this example are scrubbers, burner modifications to reduce nitrogen oxide emissions, selective catalytic reduction, and active carbon injection to control mercury.

Source: Fitch Ratings, Electric Power Research Institute.
Environmental Rules

• Credit drivers for the sector: Public Power, IOUs, Merchants
 • Regulatory certainty and implementation timeline
 • Rate flexibility
 • City council versus Board regulated
 • State Commission regulated versus deregulated merchant entity
 • Stranded asset and ability to recover cost
 • Capex growth and financial flexibility especially for IOUs
 • Generation location and fuel mix
 • Long term price of fuel (coal versus natural gas)

• PJM capacity auction (2014-15) delivery year:
 • “These increased costs were a significant contributor to the increase in clearing prices in the western part of the PJM RTO”
 • Fitch estimates an increase in capacity cost of approximately $4 to $8 per MWh depending on load factor
Fitch Ratings Public Power Team

• Dennis Pidherny, Sector Head
 +1 212 908-0738
dennis.pidherny@fitchratings.com

• Alan Spen
 +1 212 908-0594
alan.spen@fitchratings.com

• Ryan Greene
 +1 212 908-0593
ryan.greene@fitchratings.com

• Kathy Masterson
 +1 415 732-5622
kathryn.masterson@fitchratings.com

• Bhala Mehendale
 +1 212 908-0520
bhala.mehendale@fitchratings.com

• Mike Murad
 +1 212 908-0757
michael.murad@fitchratings.com

• Lina Santoro
 +1 212 908-0522
lina.santoro@fitchratings.com