Rebound Effect: Overview and Recent Research

Joshua Linn
NYU Transportation Workshop
October 2011
What Is the Rebound Effect?

- Passenger vehicle fuel economy regulation
 - Corporate average fuel economy (CAFE) standards mandate fuel economy of new vehicles sold
 - From 2012 to 2016, 40 percent increase in fuel economy with probably more to come
 - Over time, fuel economy increase for new vehicles translates to entire fleet of vehicles on the road

- Fuel economy and driving
 - Main objective of CAFE is to decrease oil consumption, improving energy security and reducing GHG emissions
 - Higher fuel economy reduces cost of driving, and people drive more than if there were no policy
CAFE Standards and Recent Gasoline Trends

Suggestive evidence VMT responds to gasoline prices … what does this imply for gasoline consumption and CAFE?

Sources: EPA and EIA
Why is the Rebound Effect Important?

- Environmental, energy security, and other implications
 - More driving means more gasoline consumption, reducing energy security and GHG benefits
 - More driving also means more tailpipe emissions of other pollutants (for example, particulates), and more congestion

- Stepping back for a moment
 - Cap-and-trade: rebound doesn’t matter (the cap is the cap)
 - Interested in rebound effect for emissions tax, but …
 - Primary interest is for energy efficiency or similar policies

- Energy efficiency standards are everywhere
 - It’s not just CAFE; medium and heavy duty trucks
 - Fossil fuel-fired electricity generators and other sectors
How Do We Estimate the Rebound Effect? (1/3)

• Simple approach
 - Fuel costs depend on fuel price divided by fuel economy:
 \[FC = \frac{P_g}{MPG} \]
 - Assume consumers respond equally to a proportional fuel price decrease as to a proportional fuel economy increase
 - Estimate correlation between fuel prices and miles traveled (or fuel consumption)

• Issues with the simple approach
 - Equivalence of fuel prices and fuel economy may be a strong assumption
 - Hard to be certain this approach controls for fuel economy
 - Difficult to estimate long run rebound effect
Estimating the Rebound Effect (2/3)

- More structural approach
 - Using formal utility maximization model or accounting identities (consumption = VMT/MPG), distinguish household’s purchase decision from driving decision

\[
VMT = f(MPG, P_g, X)
\]

\[
MPG = g(P_g, X)
\]

- Account for the fact that determinants of MPG also affect driving
- Example: a household with a lot of kids will purchase a large vehicle and drive many miles
Estimating the Rebound Effect (3/3)

• Issues with this approach
 ▪ Difficult to separately analyze these decisions
 ▪ Often have to simplify choice set (for example, aggregate to vehicle classes)
 ▪ Typically, make same assumption that gasoline prices and MPG have proportional effects on driving

• Summary
 ▪ Objective: estimate effect of fuel economy on miles traveled, all else equal
 ▪ Hard to distinguish short run and long run
What are the Estimates?

- Fairly wide range of estimates using both approaches
 - Usually summarize results as elasticity of VMT to fuel economy
 - Most estimates fall into range of 0.1 to 0.3; long run estimates tend to be larger
 - Some evidence for a recent decrease

- Estimated and actual cost effectiveness are pretty sensitive to the rebound effect
 - EPA/NHTSA use 0.1 as a baseline in regulatory analysis, and perform sensitivity analysis
 - Implications for many other policies (Cash for Clunkers, subsidies for electric vehicles)
Open Questions

- Heterogeneity
 - Consumers may vary a lot in how they respond
 - This affects overall rebound effect and distributional consequences of CAFE

- What’s behind the rebound effect and what does the future hold?
 - What explains the recent decrease in the rebound effect and will it continue?
 - Urban vs. rural gasoline demand and public transportation
 - Changes in living/working patterns
 - Use of electric vehicles
Rebound Effect Heterogeneity: Evidence from Germany

Rebound Effect by VKT Quantile

Source: Frondel et al. (2010)