

Environmental Value of Distributed Energy Resources in New York State

July 11th, 2018

Value of Distributed Energy Resources Value Stack Working Group

Outline

- E/EJ Value Subworking Group Background
- Principles
- Overview of "E" Value Methodology
- Subgroup Work on "E" Value
- Results
- Summary

Principles

- E value should compensate DERs for uninternalized damages from air pollution emissions they avoid
- E value should depend on:
 - Location: DERs are worth more when avoiding air pollution in areas with high population density and more vulnerable population
 - Time: DERs are worth more when higher emitting generators are on the margin
 - **Pollutant:** Different generators emit different pollutants, which cause different levels of public health and climate damage
- For emitting DERs, E value should be reduced based on their emissions and could potentially be negative
- Payment should balance accuracy and administrability

E Value Methodology

- **Step 1** determines what generation will be displaced by DERs.
- Step 2 quantifies the emissions rates for displaced generators.
- **Step 3** calculates the monetary value of the damages from emissions identified in Step 2.
- **Step 4** uses the emissions rates from Step 2 and damage estimate per unit of emissions from Step 3 to monetize the value of avoided emissions from displaced generation.
 - Adjustments are needed if existing policies already put a price on emissions of some or all of the pollutants covered in Steps 1-3.
- Step 5 takes into account emissions produced by the DER itself, if any.
 - Only needed if emitting DERs—such as diesel generators or combined heat and power generators—qualify for E value.

Step 1: Identifying Displaced Generator

- Options we tried but abandoned:
 - NYISO data on marginal generator, but data not publicly available
 - NYISO data on generators getting paid in a given interval, but data was insufficient
 - NYISO Gold Book data on marginal fuel, but data was not temporally granular
- Best available short-run approach:
 - Inferring marginal generator and fuel type from NYISO data on marginal emissions rates ("MER") for CO₂
- Longer term options:
 - Work with NYISO to calculate zonal marginal emissions rates for all pollutants
 - Work with NYISO to calculate granular damage value using confidential marginal generator data
 - Use econometric techniques to estimate marginal emissions rates

Figure 1: Average Hourly Zonal CO₂ MERs

Step 2 – Identifying Emission Rates of Displaced Generation

Generation-weighted State-average Emission Rates (kg/kWh) For Gas and Oil Generators

Fuel Type	NO _x	PM _{2.5}	SO ₂	CO ₂
Natural Gas	0.0003	0.00000	0.0000	0.52
Oil	0.0031	0.00003	0.0027	1.10

- When possible we used EPA's eGrid and National Emissions Inventory databases to calculate emissions rates for generators in the NYCA
 - Matched 358 out of the 412 generators (87%) active in 2016 as reported in the 2016 NYISO Gold Book
- For the remaining generators:
 - Interpolated the emissions rates for SO₂, CO₂, and NO_X based on the primary and secondary fuels
 for each generator using eGrid data
 - PM_{2.5} emissions rates based on data from the NEI

Figure 2: Emitting Generators in New York

New York State Generators

Step 3 – Calculate Damage Estimates

- For CO₂: IWG's Social Cost of Carbon ("SCC") RGGI
- For local pollutants: Damage estimates from available models
 - EASIUR
 - Advantages: Ease of use, detailed transport model, seasonal variation, different stack heights
 - Disadvantages: Only exposure to secondary PM_{2.5}, some assumptions cannot be changed
 - COBRA
 - Advantages: Ease of use
 - Disadvantages: County level granularity, simple transport model, only exposure to secondary PM_{2.5}
- Longer term options:
 - Custom Modeling
 - BenMAP
 - InMAP

Figure 3: COBRA Damage Estimates for $PM_{2.5}$ and SO_2

Step 4 – Monetize the Avoided Externality from Displaced Generation

For CO₂:

$$V_{cit} = MER_{it}^{CO_2} * (SCC - RGGI)$$

For other pollutants:

$$V_{pit} = \begin{cases} \frac{MER_{it}^{CO_2}}{0.52}V_{pit}^{gas} & \text{if } MER_{it}^{CO_2} \leq 0.52\\ \left(\frac{1.1 - MER_{it}^{CO_2}}{1.1 - 0.52}\right)V_{pit}^{gas} + \left(\frac{MER_{it}^{CO_2} - 0.52}{1.1 - 0.52}\right)V_{pit}^{oil} & \text{if } MER_{it}^{CO_2} > 0.52 \end{cases}$$

Where

 $MER_{it}^{CO_2}$: Marginal emission rate of CO_2 in zone *i* in hour *t*

 V_{pit} : Value of avoided damages from emissions of pollutant p in zone i in hour t (p= PM_{2.5}, SO₂, NO_x)

 V_{pit}^{gas} : Generation-weighted average value of avoided damages from natural gas power plants emitting pollutant p in zone i in hour t

 V_{pit}^{oil} : Generation-weighted average value of avoided damages from oil power plants emitting pollutant p in zone i in hour t

Step 4 – Monetize the Avoided Externality from Displaced Generation

$$V_{pit} = \begin{cases} \frac{MER_{it}^{CO_2}}{0.52}V_{pit}^{gas} & \text{if } MER_{it}^{CO_2} \leq 0.52\\ \left(\frac{1.1 - MER_{it}^{CO_2}}{1.1 - 0.52}\right)V_{pit}^{gas} + \left(\frac{MER_{it}^{CO_2} - 0.52}{1.1 - 0.52}\right)V_{pit}^{oil} & \text{if } MER_{it}^{CO_2} > 0.52 \end{cases}$$

- If
$$MER_{it}^{CO_2}$$
=0, then V_{pit} =0

- If
$$MER_{it}^{CO_2}$$
=0.52, then V_{pit} = V_{pit}^{gas}

- If
$$MER_{it}^{CO_2}$$
=0.75, then V_{pit} = 0.6 V_{pit}^{gas} + 0.4 V_{pit}^{oil}

- If
$$MER_{it}^{CO_2}$$
=1.1, then V_{pit} = V_{pit}^{oil}

Figure 4: E Value Stack Using EASIUR Damages

Figure 5: E Value Stack Using Low COBRA Damages

Figure 6: E Value Stack Using High COBRA Damages

Figure 7: Zone-specific Hourly E Value Using High COBRA Damages

Figure 8: Daily E Value Stack Using High COBRA Damages

Other States

- California
 - Bay Area Air Quality Management District
 - Multi-Pollutant Evaluation Method
 - 2.5% SCC
 - California Public Utilities Commission
 - Uses COBRA as a "first step" until a more robust model can be developed
 - 3% SCC, 95th percentile to account for damages not included in current models
- Maryland Value of Solar Study
 - COBRA for local pollutants
 - 3% SCC
- Maine Value of Distributed Solar Study
 - EPA per-ton values used in the cost-benefit analysis for the proposed Clean Power Plan
 - 3% SCC
- Minnesota Integrated Resource Planning
 - CAMx Air Quality Model
 - 3% SCC, 2300 time horizon; 5% SCC, 2100 time horizon

Summary

- The environmental and public health value of net avoided emissions is not zero
- We have good, existing tools to be able to put an "E" Value that covers CO₂ as well as local pollutants with some granularity
- This value changes with respect to time and location
 - Peak/off-peak/critical-peak
 - Zonal
 - Seasonal