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Multi-Objective Transmission Expansion: An
Offshore Wind Power Integration Case Study

Saroj Khanal, Christoph Graf, Zhirui Liang, Yury Dvorkin, and Burçin Ünel

Abstract—Despite ambitious offshore wind targets in the U.S.
and globally, offshore grid planning guidance remains notably
scarce, contrasting with well-established frameworks for onshore
grids. This gap, alongside the increasing penetration of offshore
wind and other clean-energy resources in onshore grids, high-
lights the urgent need for a coordinated planning framework.
Our paper describes a multi-objective, multistage generation,
storage and transmission expansion planning model to facilitate
efficient and resilient large-scale adoption of offshore wind power.
Recognizing regulatory emphasis, in some cases, requirements to
consider externalities, this model explicitly accounts for nega-
tive externalities: greenhouse gas emissions and local emission-
induced air pollution. Utilizing an 8-zone ISO-NE test system and
a 9-zone PJM test system, we explore grid expansion sensitivities,
onshore and offshore, due to offshore wind integration, including
impacts of optimizing Points of Interconnection (POIs) versus
fixed POIs, negative externalities, and consideration of extreme
operational scenarios. Our results indicate that accounting for
negative externalities necessitates greater upfront investment
in clean generation and storage (balanced by lower expected
operational costs) and less offshore investment. Optimizing POIs
could significantly reshape offshore topology or POIs and lower
total cost, albeit requiring more onshore transmission. Extreme
operational scenarios typically result in greater operational costs
and onshore line investment.

Index Terms—Offshore wind integration, transmission expan-
sion, externalities, resiliency.

NOMENCLATURE

Indices and Sets

y ∈ Y Years over the planning horizon.

e ∈ E Representative days or scenarios.

h ∈ H Hours on a representative day.

s ∈ S Nodes or zones.

S1/S0 Onshore/Offshore nodes.

i ∈ G Generators.

GD/GI Dispatchable/Intermittent (non-dispatchable) gen-

erators.

GN/GE New/Existing generators.

k ∈ K Generation technology types.

l ∈ L Transmission lines.

LAC/LDC AC/DC transmission lines.

LN /LE New/Existing transmission lines.

L1/L0 Onshore/Offshore transmission lines.

f(l)/t(l) Indices of sending/receiving nodes line l.
c ∈ C Line types.

b ∈ Bd Flexible demand block.

x ∈ X Externalities.

j ∈ J Regions for policy constraints.

Parameters

ωEC Aggregate weighting parameter of discounted

monetized externality costs.

N(·) Useful life of asset (·) in years.

r Discount rate.

GCk Cost per unit capacity of a generation technology

type k.

LCc Cost per unit capacity-length of capacity of a

transmission line of type c.
SCp Cost per unit power capacity of energy storage.

SCe Cost per unit energy capacity of battery storage.

LCc Annualized cost per unit capacity of a transmis-

sion line.

τ Number of days in a year.

ωe Weight of representative days.

RPSj Renewable Portfolio Standard in region j
PEN× Policy mandate non-compliance penalty.

PEN− Under-generation penalty.

PEN+ Over-generation penalty.

FCi Fixed annual operational cost per unit capacity of

generator i.
VCi Variable operations cost of generator i.
WPb Willingness to pay for demand block b.
CEi,x Damage costs caused by externality x per unit

energy production by generator i.
Pg
i /P

g

i Minimum/Maximum power limits of generator i.
RRi Ramp rate of generator i.
∆h Temporal resolution of model.

δh Duration (fraction of ∆h) within which reserves

should be supplied.

Mi,s,k Mapping of generator i, of type k, to node s.
Mi,s Mapping generator i to node s.
Ml,s Mapping line l to node s.
Ml,c Mapping line l to type c.
Mj,s Mapping region j to node s.
M0

s,y Mapping offshore node s to online year y.

φ Fraction of flexible load relative to the total load.

α+ Acceptable fraction of renewable curtailment out

of total renewable generation.

Dy,s,e,h Forecasted load in year y, at node s, on repre-

sentative day e, during hour h.

ηs,ch/ηs,dis Charging/Discharging efficiency of energy stor-

age resources.

DoDs Allowable depth of discharge of energy storage

resources.

κs Annual degradation factor of energy storage.

Hs Energy storage duration.

Fl,c Flow limit (capacity) of transmission line l of

type c.
Bl Susceptance of line l.
M Large positive number.

R⋆
y,s,e,h Operating reserve requirement in year y, at node

s, on representative day e, during hour h.

Binary variables

ill,c,y Investment (or construction start) of line l, of type

c in year y.

zll,c,y Availability of line l, of type c in year y.
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Continuous variables

OC
(·)
y Discounted annual operational cost of asset (·) in

year y.

IC
(·)
y Discounted annual investment cost of asset (·) in

year y.

ECy Discounted annual damage costs caused by ex-

ternalities in year y.

P g
y,s,k New generation capacity in year y at s of type k.

pgy,i,e,h Total generation of generator i in year y, on

representative day e, during hour h.

rgy,i,e,h Reserve provided by generator i in year y, on

representative day e, during hour h.

rsy,s,e,h Reserve provided by energy storage in year y, at

node s, on representative day e, during hour h.

ψ+
y,s,e,h Renewable energy curtailment in year y, at node

s, on representative day e, during hour h.

ψ−
y,s,e,h Unserved load in year y, at node s, on represen-

tative day e, during hour h.

∆dy,s,e,h Flexible demand in year y, at node s, on repre-

sentative day e, during hour h (free variable).

ρ×y,j Policy target noncompliance in year y in region

j.
fy,l,e,h Power flow through line l in year y, on represen-

tative day e, during hour h.

θy,s,e,h Voltage angle at node s in year y, on representa-

tive day e, during hour h (free variable).

I. INTRODUCTION

S
TREAMLINING transmission expansion is required for

decarbonization of U.S. electric grid [1–3]. This challenge

is pertinent to increasing renewable penetration, the need to in-

tegrate offshore wind resources, and the expected load growth

due to electrification of heating and transportation. Given that

transmission investments last for decades, investing at the

right place and time to ensure a cost-effective clean energy

transition, while not sacrificing reliability, requires a planning

framework that can take into account not only the cost and

technology drivers but also such policy drivers as greenhouse

gases, air pollution, and resilience to extreme weather events.

At the same time, interregional transmission lines cross state

lines, the cost of these lines and the debates if the resource

preference of one region requires additional transmission up-

grades in another region is a significant barrier to transmission

development [4]. In the US, transmission planners seek to

align centralized transmission network planning decisions with

decentralized generation investments [5]. Furthermore, despite

Federal Energy Regulatory Commission (FERC) Order 1000,

which highlights the importance of regional and inter-regional

planning, the majority of transmission planning processes in

the U.S. are driven by local reliability needs and separated

from generation planning [6].

The main focus of current transmission planning, in prac-

tice, has been to minimize “economic” costs for solving a local

reliability need. Even if planners look at regional needs, most

U.S. transmission planners rely on generation, storage and

transmission expansion planning (GS&TEP) models, which

include investment and operation cost estimates and often

ignore any costs or benefits related to externalities such as

greenhouse gas emissions and local air pollution from power

generation that impose costs on society (including future

generations). Similarly, there are societal benefits to a more

reliable and resilient electric power system, particularly with

an increasing frequency of climate-induced extreme weather

events.

To overcome deficiencies of existing planning processes,

FERC proposed to require transmission providers to conduct

long-term regional transmission planning on a sufficiently

forward-looking basis to meet the needs driven by changes

in the resource mix and demand [7]. FERC lists externalities

to include in the analysis, and asks transmission providers to

develop selection criteria “to maximize benefits to consumers

over time without over-building transmission facilities.” Simi-

larly, National Grid UK has begun considering objectives other

than just investment and operational costs when evaluating

integration of offshore wind farms [8]. Another policy-relevant

question for transmission planning is whether to minimize

economic costs, or conversely, if active demand side par-

ticipation is included, maximize economic welfare. Despite

policy relevance, there is limited guidance in the economic or

engineering literature on how to incorporate these factors or

even whether these factors make a difference in the optimal

investment topology, timing, or costs of both the offshore and

onshore transmission systems.

This paper uses a multi-objective modeling framework to

answer these questions. We assume the perspective of the

social planner performing joint centralized transmission and

decentralized generation expansion planning, including off-

shore wind. Guided by regulatory and policy emphasis on

incorporating externalities in offshore wind power develop-

ment, our GS&TEP model uses multi-objective optimization

to specifically address two critical negative externalities from

the electric power sector highlighted in onshore expansion

planning studies: greenhouse gas emissions and local air

pollution. Our results show that incorporating the externalities,

along with the consideration of extreme operational scenarios,

results in markedly different outcomes. The proposed multi-

objective transmission planning framework equips electric

power regulators with a tool that can help overcome balancing

multiple policy objectives and address externalities in the face

of the changing landscape in the generation mix, demand-

side participation, and, most importantly, offshore wind power

resources. Furthermore, our results show that considering

these additional factors do not lead to significant changes in

necessary onshore line investments, which may help alleviate

tensions in the current policy debates.

A rich literature exists on bottom-up, engineering-economic

planning models and tools for the electric power sector, which

consider both investment in and operation of generation, stor-

age, and transmission assets, and utilization of electric power

while capturing their economic and environmental impacts

[5, 9]. Munoz et al. [17] describe an adaptive transmission

and generation planning accounting for regulatory and market

uncertainties. Qiu et al. [18] develop a co-planning framework

for transmission and energy storage, where investment deci-

sions are made in multiple stages and operational uncertainty

is captured through representative days and addressed through

a reserve allocation rule given by [10]. Similar to other com-

modity markets, the existence of externalities in the electric

power sector is well recognized [11], including the challenges

associated with internalizing them [12]. There have been
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significant efforts to internalize these through energy planning

models. Although numerous social and environmental exter-

nalities of energy are acknowledged and deemed important,

the focus has primarily been on global pollutants, such as

CO2 emissions, due to the climate crisis, and local pollutants

that affect human health through air pollution. These planning

models studies can be broadly categorized into optimization

[13–26] and multi-criteria decision analysis (MCDA) [27, 28].

The optimization-based method has gained more attraction

in planning studies for many reasons, including their more

realistic simulation of how the actual short-term electricity

market operates [13]. Methodologically, in optimization mod-

els, externalities can be found to be internalized as constraints

or included in the objective as costs (negative externalities)

or benefits (positive externalities), or combinations of them.

Although these well-established frameworks for onshore grid

planning exist, they cannot be readily used for coordinated

grid planning, especially technical and non-technical reasons

for offshore transmission compared to onshore transmission

Various studies underscore diverse challenges and benefits

associated with offshore wind power integration. Studies by

system operators, such as the Offshore Coordination Project

by National Grid Electricity System Operator which is the

system operator for Great Britain, [29], illustrate how an

integrated approach can potentially reduce costs and enhance

resiliency benefits. Additionally, consulting studies, such as

[6], underline benefits of offshore meshed networks. However,

the limitations of the studies in [6, 29] are in (i) lacking

coordination with the onshore power grid and (ii) prescribed,

rather optimized choices for offshore network configuration.

Similarly, Musial et al. [30] stress the importance of inter-

regional coordination for offshore transmission planning to

achieve cost-effective and low-impact solutions. There also

have been modeling studies, [31–35], examining transmission

options for the integration of offshore wind power, comparing

AC and DC transmission options and cable routing. However,

studies in [30–35] do not capture economic and/or non-

economic benefits of large-scale offshore wind power integra-

tion that can be attained if co-designed with the onshore power

system and if externalities are considered. With the rise in cost

competitiveness and locational advantages of offshore wind

power resources, this paper argues that these non-economic

factors must be incorporated within transmission expansion

planning to capture the full societal value of these resources

and inform decision-makers on trade-offs between economic

and non-economic factors.

In the face of a changing resource mix and demand driven

mostly by clean energy and climate policies, the proposed

model enables coordinating and management of both onshore

and offshore transmission needs. This paper layers on top of

existing onshore grid planning methods, filling a gap in the

need for a comprehensive planning framework that includes

offshore resources and accounts for critical (negative) exter-

nalities, to help shape the existing planning and cost allocation

process. We evaluate our proposed model in test systems

designed to simulate ISO-NE and PJM systems, employing

two sets of operational data sets with two different model

details. This helps illuminate how model results are affected

by difference in geographic scope, model complexity, and

operational details while identifying overarching patterns.

y=1 y=2

Investments 1 Investments 2

Operations 1

Epoch 1

y=Y

Investments Y

Operations 2

Epoch 2

Operations Y

Epoch Y

Fig. 1: Stages for expansion decisions and ensuing operations. Note: each
stage and ensuing operations can have long- and short-term uncertainty factors
accounted for, while optimizing investment and operational decisions.

The remainder of this paper is organized as follows. Section

II builds the proposed model. Sections III and IV detail ISO-

NE and PJM case studies, covering data curation, results and

discussions. Finally, Section V concludes the paper.

II. MODEL

Fig. 1 illustrates the representation of multi-stage investments

and operations in our model. Investments are allowed at the

beginning of each epoch and system operations are modeled

within each epoch. Each stage and the ensuing operations can

have long- and short-term uncertainty factors. We capture for

the operational uncertainty via a set of operational scenarios,

consisting of representative normal and extreme days. By

employing different operational scenarios for each epoch,

representative days encapsulate both long-term and short-term

uncertainty factors, while optimizing investment and opera-

tional decisions. Unless otherwise noted in the nomenclature

as free variables, all decision variables in our model are

constrained to be non-negative.

A. Objective Functions

We enhance the GS&TEP model formulation of [14] by

explicitly incorporating the societal cost of environmental

externalities into the objective function in Eq. (1). Setting

ωEC = 0 reduces the objective function to the traditional

planning paradigm, accounting only for economic costs, such

as in [14].

min z =
∑

y∈Y

OCy + ICg
y + ICl

y + ICs
y + ωEC ECy (1)

where generation(ICg
y ), transmission line (ICl

y), energy

storage (ICs
y) investment costs are operational scenario-

independent, while variables related to system operations,

e.g., costs from externalities (ECy) and operations (OCy),

are scenario-dependent. The weighting parameter, ωEC , can

be used to weigh the aggregated “soft” cost of externalities

against the “hard” economic costs. When considering exter-

nalities (for sensitivity analyses), we typically set it to 1

and change the marginal cost estimates of each externality

individually to allow for better treatment and capture the

uniqueness of estimation.

We adjust the annualized investment costs of technology to

account for the varying lifespans of the technologies to be

invested in by using the capital recovery factor (CRF) and the

annual discount rate (γ). This allows consistent comparison

between annualized investment costs across technologies.
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CRF(·) =
r(1 + r)N

(·)

(1 + r)N(·) − 1
(2)

γ(·)n =
1
(.)
n

(1 + r)n−1
(3)

where, 1
(.)
n is an indicator function, as defined in Eq. (4),

denoting the availability of asset (·).

1
(.)
n =

{

1 n ∈ {1, · · · ,N(.)}

0 n /∈ {1, · · · ,N(.)}
(4)

1) Investment Cost

Eqs. (5)–(7) compute the generation, transmission, and

storage discounted annual investment costs.

ICg
y = CRFg

y
∑

n=1

γgy−n+1

∑

k∈K

∑

s∈S

GCk P
g
n,s,k ∀ y (5)

ICl
y = CRFl

y
∑

n=1

γly−n+1

∑

l∈L

LCc I
l
l,c,n ∀ y (6)

ICs
y = CRFs

y
∑

n=1

γly−n+1

∑

s∈S

(

SCp P s
s,n + SCeEs

s,n

)

∀ y.

(7)

2) Operation Cost

Eq. (8) calculates the discounted annual operating cost for

each year in the future. It includes the cost of operation of

existing and new resources, payment to demand response,

renewable energy curtailment cost, unserved load penalty, and

penalty for non-compliance with policy target.

OCy =
1

(1 + r)y−1

{

PEN×ρ×y,j +
∑

i∈G

FCg
i P

g

i+ (8)

∑

e∈E

τωe

(

∑

i∈G

∑

h∈H

VCg
i p

g
y,i,e,h +

∑

s∈S

∑

h∈H

OCp
y,s,e,h

+
∑

s∈S

∑

h∈H

OCd
y,s,e,h

)}

∀ y.

In Eq. (8), the penalty term (OCp
y,s,e,h), for both over-supply

or under-supply penalties, is given by:

OCp
y,s,e,h = PEN+ψ+

y,s,e,h + PEN−ψ−
y,s,e,h ∀ y, s, e, h

(9)

And, the demand (flexibility) cost (OCd
y,s,e,h), where var-

ious demand blocks (b) are valued at different levels of

willingness to pay for energy (WPb), is:

OCd
y,s,e,h =

∑

b∈Bd

WPb |∆dy,s,e,h,b| ∀ y, s, e, h. (10)

3) Cost of Externalities

Owing to environmental and social damage caused by

the electric power sector has negative externalities that must

be taken into account in energy planning models [15, 36].

Motivated by this, we use the term ‘cost’ to signal that

we are referring to negative externalities. Given the costs of

externalities per unit of energy production, the total cost of

externalities in year y is:

ECy =
1

(1 + r)y−1

∑

e∈E

∑

x∈X

τ ωe

∑

i∈I

∑

h∈H

CEi,x p
g
y,i,e,h ∀ y.

(11)

The term ECy in the objective function (Equation (1))

represents the total cost of various externalities. The cost of

externalities resembles the operation costs as they are caused

by operating fossil-fuel-fired generators. Since we assume that

these costs are directly quantified in monetary terms as ‘soft’

costs—inherently quantifying the ‘cost’ relative importance

compared to other hard costs—there is no need for additional

weighting parameters in the rest of the objective function.

Therefore, adjusting the sensitivity of the cost of externalities

to the model outcomes can be more effectively and practi-

cally achieved by individually and differently modifying the

cost estimates of each externality, instead of aggregating all

externalities and assigning a single (aggregated) weight. As

a major contributor of CO2 emissions (the most common

greenhouse gas causing global warming) and other emissions

(VOC, NOx, NH3, SOx) causing local air pollution, it is

important to internalize these damages in electricity planning

models to meet decarbonization targets with least cost and

impact. However, estimating externality costs is not an easy

task, but a crucial one as it significantly alters planning

decisions [12]. In this paper, we focus on internalizing the cost

of two of the most important negative externalities considered

in electricity planning models [11]: 1) the cost of global

pollutants (CO2 emissions) and 2) human health costs caused

by local air pollution from emissions of volatile organic

compounds (VOC), nitrogen oxides (NOx), ammonia (NH3),

and sulfur oxides (SOx). For the former, we use the estimated

social cost of carbon by U.S. EPA (see [37]). For the latter,

we estimate the marginal cost of damages caused by local air

pollution caused by emissions using the Intervention Model for

Air Pollution (InMAP) [38] and a statistical life metric [39],

as detailed in Section III-3. Using these estimates we compute

the total damage cost, which is a summand in ECy. Similarly,

other negative (or positive) externalities can be incorporated

as a summand in ECy in eq. (11), while cost estimation

techniques can vary depending on the types of externalities

considered and the methodologies used.

B. Operational Constraints

1) Generator Limits

Eqs. (12)–(15) implement the constraints on capacity and

ramping limits on generation and reserve provision. Eq. (16)

makes new generation capacity available.

Pg
i ≤ pgy,i,e,h ≤ P

g

i ∀ y, i ∈ GD ∩ GE , e, h (12)

pgy,i,e,h + rgy,i,e,h − pgy,i,e,h−1 ≤ RRi ∀ y, i ∈ GD, e, h

(13)

− RRi ≤ pgy,i,e,h − pgy,i,e,h−1 − rgy,i,e,h−1 ∀ y, i ∈ GD, e, h

(14)

rgy,i,e,h ≤ RRi δh ∀ y, i ∈ GD, e, h (15)

pgy,s,e,h Mi,s,k ≤

y
∑

n=1

1
g
y−n+1 P

g
n,s,k ∀ y, s, e, h, k, i ∈ GN ∩ GD

(16)
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2) Demand Flexibility

Eq. (17) bounds the demand flexibility as a fraction of the

total demand. Eq. (18) ensures that loads can be shifted within

a day.

∣

∣

∣

∣

∣

∑

b∈BD

∆dy,s,e,h,b

∣

∣

∣

∣

∣

≤ φDy,s,e,h ∀ y, s, e, h (17)

∑

h∈H

∑

b∈BD

∆dy,s,e,h,b = 0 ∀ y, s, e (18)

3) Power Balance

Eqs. (19)–(21) enforces the nodal power balance.

∑

i∈G

pgy,i,e,h Mi,s −
∑

l∈L

fy,l,e,h Ml,s

= Dy,s,e,h +∆dy,s,e,h + ψ+
y,s,e,h − ψ−

y,s,e,h

+
ps,chy,s,e,h

ηs,ch
− ps,disy,s,e,hη

s,dis ∀ y, s, e, h (19)

ψ−
y,s,e,h ≤ Dy,s,e,h +∆dy,s,e,h ∀ y, s, e, h (20)

ψ+
y,s,e,h ≤ α+

∑

i∈GI

pgy,i,e,h Mi,s ∀ y, s, e, h. (21)

4) Reserve Requirement

Eq. (22) imposes reserve requirements for system opera-

tions.

∑

i∈GD

rgy,i,e,h +
∑

s∈S

rsy,s,e,h ≥ R⋆
y,s,e,h ∀ y, s, e, h. (22)

Similar to the operating reserve allocation method (3%+5%

rule, [10]) used to address the uncertainty of wind power

integration, Eq. (22) requests a certain amount of operating

reserve (R⋆
y,s,e,h) to compensate for anticipated real-time

fluctuations in wind power, solar energy, and loads.

5) Energy Storage

While our energy storage model is broadly applicable to

other types of energy storage, we have tailored it for grid-scale

battery storage. In line with [14, 40], the battery energy storage

system (BESS) planning and operation include tracking the

state of charge (SoC) as per Eq. (23), enforcing capacity

limits as in Eqs. (26)–(29), and evaluating available energy

and power capacities over time, as outlined in Eqs. (30) and

(31), considering a constant annual degradation factor (κs).

However, using a constant annual degradation factor may be

an oversimplification of such operational factors as cycling,

temperature, SoC, and depth of discharge (DoD).

SoCs
y,s,e,h = SoCs

y,s,e,h−1 + ps,chy,s,e,h∆h

− ps,disy,s,e,h∆h ∀ y, s, e, h (23)

Es
s,y = DoDsE

s

s,y (24)

SoCs
y,s,e,min(H), SoC

s
y,s,e,max(H) = SoCs,0 (25)

ps,chy,s,e,h, p
s,dis
y,s,e,h ≤ P

s

s,y ∀ y, s, e, h (26)

rsy,s,e,h + ps,disy,s,e,h − ps,chy,s,e,h ≤ P
s

s,y (27)

rsy,s,e,h − ps,chy,s,e,h

ηs,ch
δh ≤ SoCs

y,s,e,h − Es
s,y (28)

Es
s,y ≤ SoCs

y,s,e,h ≤ E
s

s,y ∀ y, s, e, h (29)

E
s

s,y =

y
∑

n=1

1
s
y−n+1(1− κs)y−nEs

s,n ∀ y, s (30)

P
s

s,y =

y
∑

n=1

1
s
y−n+1 P

s
s,n ∀ y, s (31)

Hs P s
s,y = Es

s,y ∀ y, s (32)

6) Transmission Constraints

We model a typical DC power flow for transmission plan-

ning, [5, 13, 14], and extend it to incorporate DC lines by

only constraining flows [41]. Eq. (33) represents the DC power

flows for existing lines, while Eq. (34) imposes the flow limits,

∀ y, l, e, h.

fy,l,e,h =Bl

(

θy,f(l),e,h − θy,t(l),e,h
)

(33)

|fy,l,e,h| ≤ Fl, |θy,s,e,h| ≤ π. (34)

Eq. (35) records the year when a line is constructed, which

adds the investment cost in Eq. (6). Eq. (36) enforces a

delay of ∆y year between the investment decision and the

availability of an expanded line. Eq. (38) and (39) determine

the flows on new/upgraded transmission lines. Eq. (40) ensures

at least one line is available by the time any offshore node is

online (or electrically charged) and connected to the onshore

grid. Eq. (37) ensures that no line is upgraded or built twice

throughout the planning horizon.

zll,c,y =

y−1
∑

n=1

ill,c,n ∀ l ∈ LN , c, y (35)

zll,c,y ≥ zll,c,y−∆y ∀ l ∈ LN , c (36)
∑

l∈LN

∑

c∈C

∑

y∈Y

ill,c,y ≤ 1 (37)

∣

∣fy,l,e,h − Bl

(

θy,t(l),e,h − θy,f(l),e,h
)
∣

∣ Ml,c

≤ M
(

1− zll,c,y
)

∀ l ∈ LAC ∩ LN , c, y (38)

|fy,l,e,h| ≤ Fl,c z
l
l,c,y ∀ l ∈ LN , c (39)

∑

l∈LN

∑

c∈C

zll,c,y M
0
s,y ≥ 1 ∀ s ∈ S0 (40)

C. Policy Constraints

Eq. (41) implements the Renewable Portfolio Standard (RPS)

constraint for each region j. Since offshore regions are not

physically located within the onshore regions where these
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standards are in place, we attribute the flow contribution to

the specific onshore connection point where it integrates.
∑

l∈L0|s∈S1

∑

h∈H

∑

e∈E

fy,l,e,h Ml,s Ms,j

+
∑

h∈H

∑

e∈E

∑

i∈GI ,s∈S1

pgy,i,e,h Ms,i Ms,j + ρ×y,j

≥ RPSj
∑

s∈S1

∑

e∈E

∑

h∈H

Ms,j ·Dy,s,e,h ∀y, j (41)

III. ISO-NE CASE STUDY

We deploy our model using an ISO-NE 8-Zone Test System

[42], which has been enhanced and curated to include up-

dated or additional data for generation fleet, load, renewables,

and transmission parameters, thereby making it suitable for

GS&TEP studies.

A. Data Setup

We updated the generation mix using the Form EIA-860

from the U.S. Energy Information Administration (EIA) [43].

Generators are aggregated at the power plant level and if a

power plant consists of generators with different production

technologies we treat them separately. Since 99.7% of the

region’s electricity comes from natural gas, nuclear, and im-

ported electricity, we ignore existing non-thermal generators

as in [42]. For renewables, we only consider the net injec-

tion of solar and wind. Operational characteristics such as

minimum and maximum power levels and maximum capacity

are from the EIA-860 form, and, if missing, replaced by

standard technology values from [42] and the International

Renewable Energy Agency (IRENA) [44]. We use average

variable operating costs (derived from the quadratic generating

cost functions in [42] assuming operation at 80% output) for

each technology.

We utilize actual hourly load data from the ISO-NE website,

reported for the operations of the year 2022 at each load zone

[45]. Additionally, in line with ISO-NE’s expectations of an

annual 2.3% increase in electricity use, we adopted the same

assumption for load growth over the planning horizon [45].

Unlike the loads, ISO-NE reports wind and solar generation

data only at the system level. Therefore, we distributed these

data across all zones, based on the fraction of installed wind

and solar capacities, as reported in the 2022 CELT (Capacity,

Energy, Loads, and Transmission) Report from ISO-NE web-

site [45]. For the generation profiles of the six offshore wind

farms under consideration, we utilize the wind power data set

curated by the National Renewable Energy Lab (NREL) and

offered by the U.S. Department of Energy through their Open

Energy Data Initiative [46], incorporating an assumed 10%

loss in energy due to wake effects.
1) Operational Scenarios

We model hourly operating conditions to capture short-term

uncertainty across multiple years using different representative

days (or operational scenarios) across different long-term

epochs. However, we acknowledge that representative days

may not fully capture the unconditional probability distri-

butions of hourly load factors and wind and solar capacity

factors. Therefore, we also include extreme scenarios that

may in turn vary from one year to another. Scott et al. [47]

survey different clustering-based methods that are common (as

highlighted in [48]) to select representative days to capture

Fig. 2: Hourly net load (normalized) of normal and extreme scenarios.

the dynamics of intermittent supply and demand in electric

power sector planning models. They discuss different ways to

select time series (historical load, wind, and solar) as input,

which can be broadly classified into net load time series and

individual time series, with their pros and cons. Below we

describe a method based on net load series that we use as a

base set of operational scenarios.

We extract representative days as operational scenarios from

hourly net load data, i.e., hourly load minus onshore renewable

generation. To obtain representative days, we use k-means

clustering to identify the representative k-cluster centers from

the annual time series of the net load. Since the k-means

clustering algorithm has an averaging or smoothing tendency,

for each cluster, we find the day closest to its center from the

original time series to select a representative day, which we

call a normal day, and also select the day that is the farthest

and call it an extreme day (thus, we avoid smoothing extreme

scenarios). We determine the weight of representative days

based on the number of days that fall into the corresponding

cluster, excluding the day for extreme days, resulting in

extreme days having a one-day occurrence per cluster. Fig. 2

shows normalized net load profiles of representative normal

days and extreme days, with their corresponding weights. It

indicates that the probability of a normal representative day

varies from 4.6 to 31.8%, while the probability of an extreme

representative day is significantly lower (e.g., 0.27% or an

equivalent of a one-day-in-a-year event).

In addition, following the clustering methodology of [47],

we also find representative days and their weights based

on individual series to evaluate how that affects planning

outcomes. We have not provided those details here in the

interest of space or scope.
2) Average Marginal Damage from Local Air Pollution

We use the Intervention Model for Air Pollution (InMAP)

[38] to compute average marginal damages from local air

pollution of existing power plants. InMAP uses air pollution

source-receptor matrices to relate emissions at source location

to concentration at receptor locations. These matrices then

can be used to estimate locational damages from air pollution

without simulations with computationally demanding air qual-

ity models. We use 2016 annual emissions of volatile organic

compounds (VOC), Nitrogen oxides (NOx), ammonia (NH3),

Sulfur oxides (SOx), and fine particulate matter (PM2.5)

measured in short tons as inputs to InMAP. To map the Air

Emissions Modeling data to our power plant database we first

match the power plant data to Clean Air Markets Program Data

(CAMD) using the EPA-EIA-Crosswalk [49]. To calculate the
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Fig. 3: Average Marginal Damages from Local Air Pollution in ISO-NE
(Notes: Size of the red dots represents the $/MWh average marginal dam-
ages with a maximum value of 535.75 $/MWh and a minimum value of
0.31 $/MWh.)

damages from air pollution, we follow InMAP’s methodology

[38]. We first simulate the total PM2.5 concentration from

emissions at the power plant level. The total PM2.5 concen-

tration is the sum of primary PM2.5 concentration, particulate

NH4 concentration, particulate SO4 concentration, particulate

NO3 concentration, and secondary organic aerosol concentra-

tion all measured in (µg/m3). We then use the estimated total

PM2.5 concentration to estimate the number of deaths using

the Cox proportional hazards equation, along with information

on population counts and baseline mortality rates. We assume

that the overall mortality rate increases by 14% for every 10

µg/m3 increase in total PM2.5 concentration, as shown in [50].

Finally, to estimate the economic damage, we apply the value

of a statistical life metric set to $9 million [39].

The above estimation procedure is repeated for each power

plant in the sample and provides monetary estimates of eco-

nomic damages from local pollution caused annually. To get

an estimate for the marginal emissions for each power plant

we repeat the above estimation procedure adding additional

emission from generating 1 extra MWh of electricity. The

difference between these two estimates gives us an estimate of

the average (annual) marginal damages from local air pollution

for each power plant in the sample.

In Fig. 3, we show the different estimates of the average (an-

nual) marginal damages from local air pollution. The average

values for each technology are: Gas CCGT: 15.42 $/MWh,

Gas GT: 26.22 $/MWh, Gas Steam: 29.41 $/MWh, Coal:

60.38 $/MWh, and Oil: 133.70 $/MWh. We use those values

for unmatched and newly built power plants.

3) Average Marginal Emissions

We calculate the marginal emissions rates for existing

generators in ISO-NE states by deriving the average emissions

rates of CO2, SO2, and NOx across different technologies and

states using the Power Sector Emissions Data [51]. We also

directly price CO2 emissions, as it is a global pollutant, and do

not price local pollutants, e.g., SO2 and NOx, to avoid double

counting with air quality damage costs.

4) Technology Investment Options

For generation investment options, we consider fossil-fuel-

fired generators, solar, and wind, while retiring existing gener-

ators exogenously. For the sake of consistency with available

data, we include Natural Gas Combustion Turbine (NG-CT)

and Natural Gas Combined Cycle Carbon Capture and Se-

questration (NG-CC-CCS).

We also consider investments in land-based wind and so-

TABLE I: Offshore Wind Projects [30]

Project Name (Offshore Node) Online Year Capacity (MW) Candidate POI

Revolution (REV) 2024 704 CT/RI
Vineyard 1 (VINE) 2024 800 SEMA
Park City (PKCTY) 2025 800 SEMA
Commonwealth (COMW) 2027 1,232 SEMA
Mayflower 1 (MFLR1) 2025 804 SEMA
Mayflower 2 (MFLR2) 2025 400 SEMA

lar photovoltaic (PV) resources. We use normalized reduced

profiles of existing renewable profiles to be multiplied by

installed capacity for the generation contribution of those non-

dispatchable resources. Although the model can handle general

capacity expansion in offshore nodes, we exogenously con-

sider build-outs of offshore wind resources on the commercial

online year from [30] that have offtake agreements in ISO-

NE footprint (see Table I). It should be noted that for the

Revolution Wind Farm (REV) with its 704 MW capacity, 304

MW is offtaken in Connecticut (CT), while the rest done in

Rhode Island (RI). To adequately capture this distribution, we

create two separate nodes (one for each state). However, when

the model is permitted to optimize the point of interconnection

(POI), we treat REV as a single node like other offshore

projects. In terms of investment costs contribution of offshore

wind projects, we do not account for the investment cost of

the already obligated exogenous offshore wind.

For transmission network investment options, we allow

building new lines to offshore nodes and onshore line up-

grades. We particularly focus on optimal inter-farm configu-

rations of offshore wind farms, points of offshore intercon-

nection to onshore nodes, and onshore grid upgrades. Each

offshore farm is considered a separate offshore node, requiring

an investment in at least one candidate line to ensure grid

integration of the offshore wind farm by the commercial online

date of the offshore project. We incorporate three discrete

cable choices for the offshore grid: one HVAC (high-voltage

alternating current) line of 400 MW capacity and two HVDC

(high-voltage direct current) cables of sizes 1,400 MW and

2,200 MW, reflecting the current standard sizes in ongoing

projects in the U.S. For onshore line expansion, we only

consider grid reinforcement by doubling the existing capacity.

And, if onshore upgrade decisions are deemed desirable,

line upgrade decisions could potentially double the existing

capacity. Additionally, given the prevailing uncertainties sur-

rounding the eventual connection points of these offshore

projects, we permit a greater number of interconnection points

on land than what the offtake agreements specify. We optimize

inter-farm line configurations and export lines.
5) Policy Assumptions

We impose Renewable Portfolio Standards (RPS) for the

states in Table II with either strict or soft mandates (accom-

panied by a non-compliance penalty). Note that MA has a

clean energy target instead of RPS, but this study treats clean

energy targets as RPS. For this case study, we assume strict

compliance with RPS mandates.
6) Model Parameters and Specifications

In Table III, additional model parameters are presented.

Rather than solving for an annual resolution, we adopt an

epoch approach, using a 5-year duration within a 20-year

planning horizon, starting from 2022. Given the length of

each epoch, we do not impose delays on the availability

of resources following investment. Consequently, operational
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TABLE II: RPS Standard by States [52]

State Target Year RPS (%)

ME 2030 80.0
NH 2025 25.2
VT 2032 75.0
MA 2030 80.0
CT 2030 48.0
RI 2035 38.5

TABLE III: Model Parameters

Parameter Value

y {2022, . . . , 2043}
e 5 / 10 [with extreme days]
h 24
r 5%
φ 10%
κs 6%
Hs 4 h

PEN
−,PEN+ 5,000 [$/MWh], 0 [$/MWh]

ηs,ch, ηs,dis 86%, 86%
DoD

s 0.2
α+ 0.5
δh 1/6

parameters are derived from the final year of each epoch,

whereas investment-related variables pertain to the epoch’s

initial year. Costs, generation, and air quality damages are

calculated per epoch, i.e., annual variables are scaled by

the duration of each epoch. Furthermore, new incremental

investment in transmission, generation, and storage capacity in

each epoch becomes available at the beginning of the epoch

and remains unchanged throughout the planning horizon.

We use projections for generation technology cost and

performance from the NREL ATB 2022 dataset [53], com-

plemented by onshore transmission line data from [54]. Addi-

tionally, offshore line data are derived from [55]. Specifically,

[55] provides cost analyses for offshore HVAC and HVDC

transmission systems 0.6 GW and 1.4 GW considering varying

distances from the coast. We employ linear approximations

of line characteristics based on this information and perform

coefficient-wise linear interpolation on regression formulas for

the non-linearity of costs because of distance and capacity. To

ensure relevance to the US context and reflect the most recent

cost range, we adjust these projections by scaling estimates

from [56], thereby updating the cost analysis originally pre-

sented in [55]. Finally, All monetary values are adjusted to

2020 USD for uniformity.

7) Simplifications and Limitations

The case study rests on several assumptions to keep the

model computationally tractable. We use an eight-zone rep-

resentation of the ISO-NE system and model transmission

corridors, rather than specific lines. These publicly available

data may be considerably inferior to the data accessible by

transmission planners. We also do not include some non-

technical constraints in the model, e.g., renewable capacity

deployment constraints due to land use restrictions or public

opposition to renewable energy projects. Furthermore, the

extreme days considered are based on historic observations

and are not necessarily reflective of the increased likelihood

or magnitude of climate-induced extreme weather conditions.

Similarly, we omit the effect of climate change and increasing

(average) temperatures on loads, thermal efficiency factors,

and power line ratings. As mentioned earlier, we adapted cost

coefficients for market operations from the test system as per

Krishnamurthy et al. (2015)[42]. A benchmarking analysis

of the operational costs for an annual representative year

against actual ISO reports for 2022 shows a close alignment.

Consequently, we have applied the same cost coefficients

throughout the planning horizon, consistent with the EIA’s

base forecast that indicates a stable trend for natural gas prices.
Our model also presupposes perfect foresight of the demand

growth and technological cost/performance. Furthermore, our

model represents new generation decisions as aggregate capac-

ity within a given area, rather than a standalone unit, which

limits the ability to compute local air pollution.

B. Results and Discussions

We compare planning capacity expansion (generation, storage,

and transmission) and operational decisions, and associated

costs, including those of externalities, by varying the terms

included in the objective function. The objective function

of our baseline model includes only investment costs and

expected operational cost (ωEC = 0). We denote this model

specification, single-objective (SO) model. We benchmark SO

results against results from a multi-objective (MO) optimiza-

tion model, where we also include monetized environmental

externalities, such as air quality damages and carbon emission

costs in the objective function. Model outcomes computed

with five extreme days (scenarios) are denoted with the suffix

X5. This sensitivity analysis exposes the GS&TEP model with

a more complete distribution of capacity factors of weather-

dependent resources such as onshore wind, offshore wind,

and solar, as well as load to better capture extreme events.

In addition, we refine MO by optimizing the points of in-

terconnection (POI) between cables connecting offshore wind

hubs (farms) and onshore zones. We call this model specifica-

tion multi-objective, optimized POI (MO OPOI) optimization

model. All non-OPOI specifications feature candidate offshore

export lines that are restricted to connections with fixed (or a

predetermined set of) POIs on land (see Candidate POI in

Table I). However, in the OPOI specification, this constraint

is relaxed. For all offshore projects, the candidate POIs are

expanded to include multiple locations: ME, NH, NEMA, CT,

RI, and SEMA. Finally, the U.S. EPA recently proposed to

revise the estimate from $51 to $190 per metric ton [37]. We,

therefore, analyze the sensitivity of our results to changes in

the SCC estimate. Specifically, we compare outcomes using

estimates of $190 (MO EM190) per metric ton to our baseline

multi-objective (MO) specification with $51 per metric ton.
Fig. 4 summarizes the optimal transmission expansion de-

cisions for SO, MO, and MO X5 specifications, to capture

the impact of externalities, extreme days, and both. We find

that the SO specification requires an onshore transmission line

upgrade between SEMA and NEMA (see Fig. 4 a and b), while

MO does not (see Fig. 4 c and d) but with extreme days (MO

X5) do require it again (see Fig. 4 e and f). Therefore, ac-

counting for a more comprehensive set of economic costs will

actually decrease the need to upgrade onshore transmission.

The offshore topology differs in how they are meshed for SO

and MO cases (see Fig. 4 b and d).
Fig. 5 summarizes the optimal transmission expansion de-

cisions for SO, MO, and MO X5 specifications, but now with

the new set of operational scenarios following [47], to capture

the impact of externalities, consideration of extreme days,

and both. Here, we find that both SO and MO specifications,
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(a) SO, SO X5 (b) focused (a)

(c) MO (d) focused (c)

(e) MO X5 (f) focused (e)

Fig. 4: Optimal onshore and offshore topology: Impacts accounting for
externalities and extreme days.

including SO with extreme days (SO X5), require the same on-

shore transmission line upgrades between SEMA and NEMA,

SEMA and RI, and NEMA and RI (see Fig. 5 a and b), while

MO with extreme days (MO X5) requires less onshore line

upgrades (see Fig. 5 e and f). Therefore, accounting for a more

comprehensive set of economic costs may actually decrease

the need to upgrade onshore transmission. However, unlike in

Fig. 4, offshore topologies remain the same across SO, MO,

SO X5, and MO X5 cases (see Fig. 5).

Fig. 6 shows optimal transmission outcomes with optimiz-

ing POIs, both with normal days (MO OPOI) and extreme

days (MO OPOI X5). MO OPOI requires fewer lines but with

similar topology compared to fixed POI cases, as in SO and

MO (see Fig. 4), however together with extreme days, they

become more meshed to onshore grid, favoring an extra HVDC

line to RI. With the other set of operational scenarios from

[47], offshore topologies are more meshed to onshore grid,

similar to the case with the first set of scenarios, but with

different POIs, e.g., NEMA instead of SEMA. (see Fig. 7)

Referring to Fig. 8 shows the optimal transmission decisions

with a higher SCC equal to $190 per metric ton. It shows

(a) SO, SO X5 (b) focused (a)

(c) MO (d) focused (c)

(e) MO X5 (f) focused (e)

Fig. 5: Optimal onshore and offshore topology: Impacts accounting for
externalities and extreme days, with operational scenarios from [47]

.

that outcomes with a higher SCC, compared to MO with the

baseline SCC of $51 per metric ton (see Fig. 4 c and d),

avoids the need for onshore line upgrades even when including

extreme days. However, using the other, more temporally-

coupled, set of operational scenarios, in Fig. 9, it requires

one more onshore transmission line upgrade. But compared to

the corresponding MO case (see Fig. 5 c and d), it requires

two less onshore line upgrades. In general, we find that higher

SCC leads to reduced onshore line investment.

Fig. 10 presents the supply-side and storage capacity expan-

sion decisions. Most planned investment comes from onshore

(or land-based) wind resources and far less from gas-fired

generating and battery storage resources. Note that some states

in the ISO-NE footprint have very ambitious RPS targets,

which contribute to the onshore wind expansion decisions (and

also to the exogenous offshore wind expansion plans). MO and

MO OPOI lead to no or insignificant investment in gas-fired

generating resources but to more investment in battery storage

(SO: 0 MW, MO: 948.02 MW, and MO OPOI: 948.02 MW).

Furthermore, onshore, land-based wind expansion increases
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(a) MO OPOI (b) focused (a)

(c) MO OPOI X5 (d) focused (c)

Fig. 6: Optimal onshore and offshore topology: Impacts of optimizing POI
and consideration of extreme days.

(a) MO OPOI (b) focused (a)

(c) MO OPOI X5 (d) focused (c)

Fig. 7: Optimal onshore and offshore topology: Impacts of optimizing POI
and consideration of extreme days, with operational scenarios from [47].

(a) MO EM190 (b) focused (a)

(c) MO EM190 X5 (d) focused (c)

Fig. 8: Optimal onshore and offshore topology: Impacts of higher social cost
of carbon estimates and consideration of extreme days.

(a) MO EM190 (b) focused (a)

(c) MO EM190 X5 (d) focused (c)

Fig. 9: Optimal onshore and offshore topology: Impacts of higher social cost of
carbon estimate and consideration of extreme days, with operational scenario
from [47].
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Fig. 10: Optimal supply-side and storage capacity expansion decisions
with varying specifications. Top: Across existing onshore zones and model
specifications. Bottom left: Across epochs and model specifications. Bottom

right: Total across model specifications. X5 denotes consideration of extreme
scenarios.

drastically in the MO specifications (SO: 27.19 GW, MO:

46.46 GW, and MO OPOI: 46.58 GW). The increased share

of onshore wind capacity will replace less efficient (and hence

dirtier) existing generators, as evident from the generation

mixes in Fig. 12. Epoch-related generation mixes in Fig. 12

depict the total generation decisions over the entire epoch, i.e.,

for five years. Relative to the SO specification, accounting for

environmental externalities significantly reduces the operation

of coal-fired power plants.

Regarding supply-side and storage capacity expansion deci-

sions when accounting for extreme days (see Fig. 10), we find

that more wind and gas-fired resources are added to the system

when accounting for in the SO specification. This pattern is

different in the MO specification where effectively less total

capacity is added but the capacity mix of new generation and

storage is more diversified by replacing some of the onshore

wind additions with solar PV and storage.

Fig. 11 shows again the same set of results as Fig. 10, but

with the new set of operational scenarios. In the cases without

extreme weather the optimal solution features similar levels of

onshore wind investments (SO: 25.26 GW, MO: 27.98 GW,

and MO OPOI: 27.95 GW) and no battery storage investment.

However, with extreme days there is battery storage investment

of SO X5: 11.33 MW, MO X5: 657.41 MW, MO OPOI X5:

543.57 MW) and with MO X5, MO OPOI X5 cases favoring

investment in solar, whereas MO EM190 and MO EM190 X5

both leading to significantly higher investment in battery and

solar.

Fig. 14 compares the varying sets of solutions with respect

to their cost considering SO as the base specification. Surpris-

ingly, the total “hard economic costs,” i.e., investment costs

and expected operating costs, are the same order of magnitude

in all three specifications (SO: $60.19 billion, MO: $68.16

billion and MO OPOI: $67.87 billion). However, both MO

cases end up with higher investment costs (SO: $31.5 billion,

MO: $53.05 billion and MO OPOI: $52.74 billion) that are

traded off with lower expected operational costs (SO: $28.69

billion, MO: $15.11 billion and MO OPOI: $15.13 billion).

The higher (upfront) investment costs in MO and MO OPOI

come with two benefits: lower overall expected operational

costs, and a stark decrease in environmental externalities (SO:

$48.84 billion, MO: $9.12 billion, MO OPOI: $9.14 billion).

In the MO specifications, environmental externality costs

Fig. 11: Optimal supply-side and storage capacity expansion decisions with
varying specifications, with operational scenarios from [47]. Top: Across
existing onshore zones and model specifications. Bottom left: Across epochs
and model specifications. Bottom right: Total across model specifications. X5
denotes consideration of extreme scenarios.

Fig. 12: Optimal generation decisions with varying specifications. Top: Across
existing onshore zones and model specifications. Bottom left: Across epochs
and model specifications. Bottom right: Total across model specifications. X5
denotes consideration of extreme scenarios.

Fig. 13: Optimal generation decisions with varying specifications, with oper-
ational scenarios from [47]. Top: Across existing onshore zones and model
specifications. Bottom left: Across epochs and model specifications. Bottom

right: Total across model specifications. X5 denotes consideration of extreme
scenarios.
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Fig. 14: Optimal costs with varying specifications. Top: Costs across epochs
and model specifications. Bottom left: Cost comparisons across model specifi-
cations considering SO as the baseline. Bottom right: Total costs across model
specifications. X5 denotes consideration of extreme scenarios.

Fig. 15: Optimal costs with varying specifications, with operational scenarios
from [47]. Top: Costs across epochs and model specifications. Bottom left:
Cost comparisons across model specifications considering SO as the baseline.
Bottom right: Total costs across model specifications. X5 denotes considera-
tion of extreme scenarios.

are slightly increasing as a response to better accounting for

extreme weather occurrences but generating and investment

costs do not starkly vary across all specifications (see Fig. 14).

In Fig. 10, we show that more onshore wind, solar PV,

and storage capacity is installed, and operated(see Fig. 12),

when we use a higher SCC. Consistent with the capacity

expansion decisions, the increased capital expenditures are

offset by lower expected operational costs as can be seen in

Fig. 14. A higher SCC value drastically reduces carbon dioxide

emissions over the total planning horizon (MO: 62.02 MMT

and MO EM190: 18.33 MMT). However, because the reduced

carbon dioxide emissions are valued at a higher SCC estimate

the carbon externality costs are not necessarily decreasing

(MO: $8.5 billion and MO EM190: $8.8 billion). Furthermore,

additional reduction in greenhouse gas emissions comes with

increased investment and operating costs (MO: $68.16 billion

and MO EM190: $80.99 billion).

Fig. 16 displays the total air quality damage estimates of SO

scenario and the difference between MO and SO scenarios,

summed over the planning horizon. And Fig. 17 presents the

total air quality damage estimates for the MO scenario and the

difference between the OPOI scenarios of MO and the MO

TABLE IV: Air Quality Damage Costs with Varying Specifications [$MM]

Zone\Specification SO SO X5 MO MO X5 MO OPOI MO OPOI X5 MO EM190 MO EM190 X5

ME 4.07 6.67 2.52 6.73 2.52 6.10 - 2.94
NH 4,014.64 3,960.49 2.76 17.03 2.90 16.82 - 3.61
VT 7.12 113.39 - 1.12 - 0.79 - 0.84
WCMA 187.82 178.06 0.10 4.43 0.10 4.50 - 2.43
NEMA 341.66 309.98 - - - - - -
CT 231.12 235.99 2.27 15.44 2.09 14.46 - 9.51
RI 150.36 142.82 - 0.05 - 0.05 - 0.02
SEMA 5,811.60 5,659.17 3.04 22.94 3.04 24.55 - 2.51

Fig. 16: Distribution of impact cost due to air quality damage. Left: SO, Right:
Difference between MO and SO. Horizontal bar: absolute scale, vertical bar:
normalized scale.

scenarios. Both accounting for externalities and optimizing

points of interconnection lead to a reduction in air quality

damages. However, it should be noted that accounting for

externalities has a greater impact compared to optimizing

interconnection points. Total air quality damage costs for all

zones across all specifications are given in Table IV.

IV. PJM CASE STUDY

This section describes our numerical results for the PJM test

system. However, PJM data was sourced from the EPA Zonal

Model [57], following fossil-fired generator retirement data

from [58] that is roughly consistent with the PJM estimates

[59], which is different from the ISO-NE test system in [42]

used above. Therefore, we had to appropriate this data to fit

the proposed model to enable systematic comparison. We set

the limit of transmission expansion capability up to existing

capacity of the corridor, to be consistent with the assumption

of ISO-NE discrete choice of the same size. Additionally,

the PJM region does not have well-defined state borders

for Renewable Portfolio Standards (RPS) mandates, leading

to potential over- or under-estimation in the buildouts of

new renewables. Despite these limitations, analyzing the PJM

system remains valuable for understanding the impact of coor-

dinated transmission planning and offshore grid planning while

accounting for critical negative externalities. This approach

also provides insights into how other sensitivities compare to

Fig. 17: Distribution of impact cost due to air quality damage. Left: MO,
Right: Difference between MO OPOI and MO. Horizontal bar: absolute scale,
vertical bar: normalized scale.
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Fig. 18: Average Marginal Damages from Local Air Pollution in PJM (Notes:

Size of the red dots represents the $/MWh average marginal damages with a
maximum value of 7,237.12 $/MWh and a minimum value of 0.47 $/MWh.)

TABLE V: Renewable Portfolio Standards by States and Zones

State (Zone) Target Year RPS (%)

MD (PJM AP, PJM SMAC) 2030 50
OH (PJM ATSI, PJM West) 2026 8.5
IL (PJM COMD) 2040 50
VA (PJM Dom) 2045 100
NJ (PJM EMAC) 2030 50
PA (PJM PENE, PJM WMAC) 2021 18

the ISO-NE Case Study. We employed a methodology similar

to the one used for the ISO-NE to prepare the data for the PJM

system and use the same model parameters given in Table III.

Table V outlines the RPS requirements for each state within

PJM. However, since parts of these states may not be within

PJM, some zones might be constructing excess renewables

relative to their share. Fig. 18 shows average marginal damages

from local air pollution in PJM.

Fig. 19 illustrates the optimal onshore transmission buildout

and offshore topology with varying specifications. In contrast

to the ISO-NE system, we observe a consistent offshore

topology in fixed Point of Interconnection (POI) scenarios

(SO and MO), characterized by primarily radial layouts with

some mesh elements. However, the onshore buildouts display

distinct variations. Unlike the fixed POI cases, the offshore

topology in optimized POI scenarios (MO OPOI) shows a

different pattern, focusing more on radial and mesh config-

urations. Fig. 21 presents new capacity additions, Fig. 25

details the associated costs, and Fig. 23 depicts the genera-

tion profiles. In MO cases, there is a notable investment in

batteries, especially in scenarios with higher SCC, coupled

with a decrease in externality costs. Unlike the ISO-NE cases,

significant differences are not observed in extreme scenarios.

Consistently, PJM invests more in wind and fossil-fired gen-

erators, notably Natural Gas Combined Cycle (NG-CC) units.

Fig. 20 shows how transmission decisions changes with

new operational scenarios. Compared with Fig. 19, fixed

POIs specifications (SO and MO) do not impact on topology,

while OPOIs favor a meshed offshore network. However, with

the other sets of operational scenarios, we see higher costs

for extreme scenarios, compared to cases with only normal

scenarios, Fig. 22 shows the upfront investment in supply

capacity is common between two sets of operational scenarios,

while the magnitude of the invested capacity ranges from

275.2 GW in SO to 502 in MO EM190 X5, unlike almost

flat capacity mixes from previous scenarios (ranging from

497.01 GW in SO X5 up to 609.19 GW in MO EM190).

Differences are due to significantly more solar investment in

regions COMD, DOM and EMAC. Also, resource diversity

(a) SO (b) focused (a)

(c) MO (d) focused (c)

(e) MO OPOI (f) focused (e)

Fig. 19: Optimal onshore and offshore topology with varying specifications.

has led to less investment in gas units. Fig. 26 shows greater

costs under extreme scenarios. The results also indicate more

line investment in OPOI cases, less battery in MO, and both

OPOI and MO cases favor battery when high SCC is imposed.

V. CONCLUSION

We describe a multi-objective, multi-stage capacity expansion

framework that encompasses generation, storage, and trans-

mission to offer a comprehensive approach to coordinated grid

planning with large-scale deployment of offshore wind power.

In addition, our model accounts for unpriced or underpriced

externalities, such as greenhouse gas emissions and local air

pollution. In the face of large-scale offshore grid integration,

this provides a deeper understanding of both economic and

non-economic costs in grid expansion decisions, thereby help-

ing reform existing planning and aiding in cost allocation

processes.

In our analysis of the ISO-NE system, we discovered that

accounting for negative externalities could reduce onshore line

upgrades and increase upfront investment in clean energy and

storage resources, which are largely offset by lower expected

operational costs. Considering extreme operational scenarios

drives the need for onshore transmission upgrades and meshed

offshore networks. Additionally, we observed that strictly

fixed POIs (adhering to predetermined offtake agreements)

for offshore wind projects could reduce resilience benefits

and increase overall costs. Finally, when comparing results

with a temporally coupled set of operational scenarios, there

was a notable shift in generation investment decisions and

related costs, yet maintaining consistent overarching insights

on transmission investments. For the PJM case study, op-

timizing POIs, considering externalities, and accounting for

extreme scenarios remains important similarly to the ISO-NE

case study. The cases with all fixed POIs resulted in similar
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(a) SO (b) focused (a)

(c) MO (d) focused (c)

(e) MO OPOI (f) focused (e)

Fig. 20: Optimal onshore and offshore topology with varying specifications,
with new scenarios [47].

Fig. 21: Optimal supply-side and storage capacity expansion decisions
with varying specifications. Top: Across existing onshore zones and model
specifications. Bottom left: Across epochs and model specifications. Bottom

right: Total across model specifications. X5 denotes consideration of extreme
scenarios.

offshore network topologies, and those with all optimized POIs

showed little to none qualitative difference from the ISO-NE

results. Furthermore, considering the extra set of operational

scenarios led to differences in clean energy investment (e.g.,

increased investment in solar as opposed to wind-dominated

investment previously) and operational costs, while the impact

on optimal offshore configurations remained unchanged. In

essence, these findings underscore the significance of incor-

porating externalities and extreme scenarios in energy policy

and planning models, particularly in the face of a changing

generation mix and demand that are mostly driven by clean

energy and climate policies.
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