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Abstract 

Policymakers across the world are starting to look to residential energy customers and 

behind-the-meter distributed energy resources (DERs) such as rooftop solar panels, energy storage 

systems, smart appliances, and heating electrification as part of the solution to combat climate 

change. However, because the deployment and operation of these technologies are determined by 

the incentives residential customers face – through retail electricity tariffs – if or how much they 

reduce emissions is uncertain. In this paper, we use an economics-engineering simulation model to 

analyze how different types of residential retail tariff designs such as time-of-use, critical-peak 

pricing, and fully cost-reflective tariffs affect DER deployment and use, and, hence, the resulting 

emissions of CO2, SO2, and NOx in the Commonwealth Edison service territory in Chicago. Our 

results show that in the short term retail tariffs can help or hinder environmental goals through their 

effect on DER deployment and consumption behavior, emphasizing the importance of pairing DER 

policy initiatives with decarbonization efforts at the wholesale electricity level. Further, we show 

that the effectiveness of other climate policies such as a carbon tax can vary depending on the 

granularity of tariff designs, highlighting the importance of considering retail tariff design in 

climate policy discussions. 

  

                                                 
 Unel: Corresponding author. Institute for Policy at NYU School of Law, e-mail: burcin.unel@nyu.edu; Esparza, 
Mohlin, and Spiller: Environmental Defense Fund; Tapia-Ahumada: MIT Energy Initiative. Authors thank Alfred P. 
Sloan Foundation for its generous financial support for this project, and the participants at the 37th USAEE/IAEE North 
American Conference, the 89th Annual Meeting of the Southern Economic Association and the 25th Annual Conference 
of the European Association of Environmental and Resource Economists for helpful comments. We are also grateful to 
Ashwini Bharatkumar, Alex Bi, and Elizabeth Stein for input and support. All errors are our own.   



2 

 

1. Introduction  

Many policymakers around the world are starting to look to residential energy customers 

and behind-the-meter distributed energy resources (DERs) such as rooftop solar panels, energy 

storage systems, and smart appliances in their efforts to reduce greenhouse gas emissions. In fact, 

the perceived environmental benefits of these resources are among the major drivers of policies and 

mandates that aim to increase DER deployment. At the same time, incentivizing consumers to 

switch to electric heat pumps from gas heating is also considered a crucial element for reaching 

decarbonization goals. However, because of the manner in which the electric grid operates, if and 

by how much these technologies bring emissions benefits depends on where they are deployed, and 

how they are operated. And, because both their deployment and operation depend heavily on the 

financial incentives their owners face – the potential electricity bill savings that DERs provide as 

determined by retail electricity rates – it is uncertain whether, or by how much, DERs can reduce 

emissions.  

Economic inefficiencies in current retail tariffs are already well established in the literature. 

(Borenstein and Bushnell 2018; Revesz and Unel 2020). In the U.S., most residential electricity 

customers currently face a two-part tariff, with a fixed monthly charge and a flat volumetric per-

kWh charge, even though wholesale electricity prices vary significantly throughout the day. Hence, 

there is a disconnect between the retail electricity tariffs end-users face, which are set through 

utility rate cases by state regulators for multi-year periods, and the prices in the wholesale energy 

markets, which are generally determined by grid operators at sub-hourly intervals using auctions. 

Furthermore, electric generation, transmission and distribution capacity costs are driven by peak 

demand needs, and thus cannot be reflected accurately by flat volumetric rates. In addition, there is 

no existing price on pollution that is high enough to fully internalize the damages from the 

emissions – in particular CO2, NOx and SO2 - associated with electricity generation. In other words, 

most retail electricity customers do not see the full social marginal cost of electricity, leading to 

consumers either overpaying or underpaying depending on when and where they consume their 

electricity (Borenstein and Bushnell 2018). And, because most DER compensation frameworks 

such as net energy metering (NEM) rely on the retail tariff structure and underlying rates the 
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customers face, a discrepancy between retail electricity prices and the underlying social marginal 

costs also leads to an inefficient deployment of DERs (Revesz and Unel 2017; Sexton et al. 2018).  

In recent decades, there has been  slow movement toward more advanced tariff designs 

(Revesz and Unel 2020). In many states, electric utilities offer various types of voluntary time-

variant rates, with for example Commonwealth Edison (ComEd) in Illinois even offering real-time 

pricing. California has required its three large investor-owned utilities to introduce default time-of-

use rates for its residential electricity customers. And some states, like New York, are requiring 

their utilities to offer more cost-reflective tariff designs to increase the DER deployment in their 

states. But, though these policy and regulatory initiatives are partially motivated by environmental 

goals, any discussion about the potential of DERs leading to negative environmental consequences 

has been lacking in these policy discussions. Similarly, while the policymakers recognize the role 

that electricity rates play in incentivizing electrification of the building and transportation sectors, 

they usually focus on keeping the rates low to encourage electrification, ignoring the possibility that 

emissions could increase if the electricity rates do not reflect the social marginal cost of electricity 

provision accurately. 

Understanding the potential effects of retail tariff design on emissions in the presence of 

new technologies is complicated by the fact that retail tariff design affects not just the operation of 

DERs, but also the initial investment and deployment of them. While there are studies that look at 

the effect of tariff design on either of these dimensions on their own, there are only a few studies 

that simultaneously look at the effect of retail design on endogenous DER deployment and the 

operational incentives (Spiller et al. 2020, Boampong and Brown 2018), and the resulting social 

welfare implications. However, these studies focus on private and system costs, and do not consider 

emissions.  

Our first objective with this paper is to fill this gap in the literature by using a novel techno-

economic simulation model to show the potential effects of different types of retail tariff designs on 

DER deployment and operation, as well as heating electrification, and the resulting emissions of 

CO2, SO2, and NOx. We adapt a well-established engineering model for optimal DER operation by 

incorporating utility functions for consumers and calibrating it to smart meter data from ComEd 

residential customers in Chicago, thereby allowing us to take into account the unobservable 
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intrinsic utility households receive from consuming electricity at an hourly basis. Our approach 

allows us to show the potential consequences of various tariff designs, including theoretical cost-

reflective tariffs, on consumer behavior and social welfare.  

We add to the literature on the welfare consequences of tariff design by showing that it can 

affect emissions through its effect on DER deployment and operation decisions. It might even be 

the case that increased DER deployment could be detrimental to society when emissions are taken 

into account – at least in the short term, when the grid is still emission-intensive in some periods. 

This happens when the highest priced periods do not correspond with the periods with the highest 

marginal emission rates, in which case load shifting due to DER operation and behavioral change in 

response to high prices may increase emissions. For example, a recent analysis of California’s Self-

Generation Incentive Program showed that increased deployment of behind-the-meter storage 

systems led to an increase in emissions, despite being in a state with a relatively cleaner generation 

mix, because the time-of-use periods for retail electricity tariffs did not match well with marginal 

emission rates (Itron 2017). And, even if this load shifting might avoid or defer costs associated 

with peak capacity, those costs savings might not be high enough to compensate for the social costs 

due to increases in emissions. 

Although several authors have looked at the implications of specific tariff designs on 

emissions (Allcott 2011; Holland and Mansur 2008; Harding, Kettler, and Lamarche 2019), ours is, 

to the best of our knowledge, the first that can compare the consequences of multiple tariff designs 

in a consistent way. Similarly, there is a lengthy literature analyzing the environmental 

consequences of specific DER technologies that can shift or modify consumer demand, including 

energy storage (Graff Zivin, Kotchen, and Mansur 2014; Hittinger and Azevedo 2015; Hittinger 

and Azevedo 2015; Carson and Novan 2013; Linn and Shih 2019; Revesz and Unel 2018; Shrader 

et al. 2020), demand response (Holladay, Price, and Wanamaker 2015; Gilbraith and Powers 2013), 

or energy efficiency (Callaway, Fowlie, and McCormick 2018; Fowlie, Greenstone, and Wolfram 

2018), as well technologies that can reduce net demand such as solar panels (Siler-Evans et al. 

2013; Spiller et al. 2017; Sexton et al. 2018). However, our model allows us to consider all these 

DER options together, as well as heating electrification, taking into account that the decision to 

adopt a specific combination of DERs, if any at all, is endogenous to both the tariff design and the 

availability of other DER investment options. In other words, we can separate out the static effects 
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of a single type of DER adoption and operation, and the dynamic effects of endogenously choosing 

to invest and operate a portfolio of DERs. 

Our second goal also is to highlight the impact tariff design can have on the effectiveness of 

climate policies, even though retail tariff design is usually an afterthought in climate policy design. 

Our results show that retail electricity tariffs that do not reflect prices in the wholesale energy 

markets can reduce the effectiveness of a Pigouvian CO2 emission tax (such as the one currently 

being discussed in New York) by eliminating a potential emission reduction channel, i.e. load 

shifting by consumers. Lack of granular tariff designs also hinder the ability of a carbon tax to align 

the arbitrage incentives for behind-the-meter batteries with emission reduction opportunities. In 

other words, inefficiently designed retail tariffs not only hinder economic efficiency by distorting 

price signals, but also hinder the effectiveness of a potential “first-best” climate policy of an 

economy-wide carbon tax.  

Finally, we show that an “incomplete” carbon tax in electricity markets might hurt social 

welfare. If there is a carbon price on the bulk power system, but emitting DERs such as gas-fired 

backup generators are not subject to the same carbon price, more granular tariff designs may lead to 

higher deployment of such DERs. Similarly, if natural gas for residential heating is not subject to a 

carbon tax, there might be emission leakage. Consequently, depending on the emission rates of the 

DERs that consumers end up adopting, the welfare gains achieved by a carbon tax implemented 

only in the wholesale electricity markets could be reduced. This result particularly highlights the 

need for careful coordination among policymakers in electricity regulation, where there is a 

jurisdictional divide between agencies regulating different parts of the sector.   

Our results are highly relevant to policymakers focused on environmental objectives. We 

highlight the importance of retail tariff design, usually an afterthought in environmental 

policymaking, in achieving environmental goals through DER adoption. How retail tariffs are 

designed determines whether DERs can actually help or hinder the environmental goals of DER 

policies. And retail tariff design can even hinder the effectiveness of other, broader climate policies 

by muting price signals from the wholesale electricity markets. 

The rest of the paper is organized as follows. In Section 2, we explain our methodology and 

model. In Section 3, we describe different tariff design scenarios we test. In Section 4, we describe 
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our results. In Section 5, we discuss the policy implications of our results. Finally, in Section 6 we 

conclude. 

2. Modeling and Calibration Methodology 

We use a novel techno-economic simulation model to understand the effects of tariff 

designs on DER adoption and use, and in turn, their effect on emissions. Here, we briefly explain 

the main features of our model. Our full modeling framework, and technical assumptions, are 

explained in more detail in (Spiller et al. 2020; Esparza et al. 2020; Bharatkumar et al. 2019) and 

Tapia-Ahumada et al. (2020).  

In our model, for a given tariff design, a household chooses its electricity consumption, 

DER investments, and DER operations to minimize its net electricity expenditure, subject to a 

variety of technical and physical constraints. Our modeling gives us three important advantages that 

are valuable to current policymaking discussions.  

First, our simulation model allows us to test hypothetical tariff design scenarios that are not 

yet implemented. This exercise is especially important for current policymaking as more 

jurisdictions are trying to implement more advanced designs, and looking for guidance from the 

economics literature. Even as there are econometric estimates of consumer response to different 

tariff designs, those analyses are limited to designs that are currently implemented (e.g. Faruqui and 

Sergici 2010; Allcott 2011), further hindering policy discussions about more innovative designs. 

For example, state regulators frequently cite the lack of empirical evidence related to consumer 

response to residential coincident-peak demand charges as one of the reasons for their hesitance to 

implement said rates. Further, there is no easy way to compare consumer responses across different 

designs, as ex-post empirical analyses consider different groups of consumers facing different tariff 

designs in different settings in different states. As a result, well-calibrated simulation exercises 

based on smart meter data can provide valuable guidance beyond a theoretical discussion and 

identify which rates are most promising to test out in a real-world pricing pilot. Similarly, with our 

methodology, we can test different levels and configurations of a potential carbon tax, which is not 

currently politically feasible. 
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Second, our model, which combines economic theory with machine learning techniques, 

allows us to leverage smart meter data into representative consumer groups, with inferences about 

the underlying utility function parameters. Identifying unobserved preferences is especially 

challenging in econometric analysis without a rich enough dataset that can control for a long list of 

variables ranging from household income to the number and types of appliances in a given 

household. And, even then, inferring the underlying utility function to be able to predict inter-hour 

substitution when faced with a different tariff design is difficult. For example, even if consumers 

have a price elasticity of -0.1 in aggregate, that doesn’t mean that they would reduce their 

consumption consistently by 1% across all hours when faced with a 10% price increase. It may be 

that they value consumption during a certain hour high enough that they would not change their 

consumption during that period, instead changing their behavior in other times. Because using AMI 

data allows us to infer parameters of a utility function that allows for inter-hour substitution, our 

model can take into account such intrinsic preferences. As a result, we can simulate hourly 

consumption profiles that are consistent with observed real-life patterns in business-as-usual 

scenarios, even if we cannot observe many intrinsic characteristics and preferences of households.  

In other words, our model allows us to be more confident in our predictions about consumer 

behavior under different tariff designs, especially the ones that include significant time variation, 

even when there is not yet a real world example of that design, rather than merely by extrapolating 

using an aggregate price elasticity estimated ex-post with incomplete controls. This is especially 

important for an accurate understanding of the emissions consequences of tariff designs when many 

consumers shift their load patterns as a response to time-variant pricing, or when consumers can 

endogenously choose a portfolio of DER investments.  

Third, our model allows us to take into account forward-looking avoidable costs, rather than 

relying only on embedded cost data. Economically efficient retail tariffs should reflect forward-

looking avoidable costs (Kahn 1988). And, whether a particular DER can improve social welfare 

depends on whether it can avoid any costs, be it costs related to energy, network, or emissions. 

However, both the current retail tariffs, as well as the welfare analyses of them, rely on embedded 

costs of service (Burger et al. 2020). Our model, by using a network model, allows us to incorporate 

costs that can be avoided in the future based on optimized distribution level network investments. 
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Consequently, we can discuss the overall social welfare consequences of tariff design changes that 

include consumer welfare, utility avoided costs, as well as emissions. 

Because our model includes multiple modules, each with its own calibration methodology, 

we only briefly explain the structure and the analytical steps here. At a high level, our modeling 

involves three different modules that interact: (1) consumer decision-making module, (2) wholesale 

market module, and (3) distribution network module. The combination of these three modules gives 

us a model that represents electricity generation and distribution in our area of interest, as well as 

the behavior of the consumers in that area. As a result, we can test how consumers behave when 

faced with various tariff designs, in terms of load shifting and DER adoption, and thus estimate the 

effect on future costs and emissions.  

a. Consumer Decision-making Module 

We adapt an engineering simulation model developed by Massachusetts Institute of 

Technology (MIT) to better represent customers’ preferences about electricity consumption. The 

Demand Response and Distributed Resources Economic Model (DR-DRE) 2.0 simulates 

households’ hourly electricity consumption, DER and electrification investments and operations 

decisions, based on the household’s electricity prices/tariff structure and investment costs. DR-DRE 

2.0 can represent a variety of tariff designs, which can include time-varying energy ($/kWh), 

capacity ($/kW), or fixed charge components. Based on these tariffs, consumers choose a portfolio 

of DER investments and associated operations, leading to different load shapes under each tariff 

design. The available DER investment options in DR-DRE 2.0 are rooftop solar panels, energy 

storage, and natural-gas-fired distributed generation. In addition, this model allows consumers to 

endogenously switch to electric heating (i.e. air-source heat pumps) from gas heating if that is more 

beneficial for the consumer given a tariff design. Consistent with most common state policies, 

rooftop solar panels and energy storage qualify for net metering compensation – consumers receive 

a bill credit equivalent to the volumetric rate for every kWh of electricity generated in the billing 

period. However, natural-gas-fired distributed generation can only offset a consumer’s load, as this 

type of DER is not typically subject to net energy metering. DR-DRE 2.0 can also simulate optimal 

provision of different services from DERs, such as energy and capacity. And, in turn, these 

different load shapes lead to different emissions outcomes.  
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In its original form, DR-DRE is a typical engineering cost-minimization problem with an 

ad-hoc and time-invariant monetary penalty for deviations from a reference temperature. Therefore, 

it lacks the ability to take into account intrinsic consumer preferences about the timing of electricity 

use. However, being able to take these preferences into account is especially important when trying 

to understand how consumers would respond to hypothetical time-variant tariff design scenarios. 

So, we convert this model into an expenditure minimization problem subject to a utility constraint. 

To characterize consumer preferences, our utility function has two parts. First, we use a Stone-

Geary utility function to represent the utility changes from inter-hour substitutions of non-thermal 

electricity use, such as running a dishwasher at different hours. Second, we include a quadratic 

utility function for thermal electricity use to represent consumer preferences related to thermal 

comfort, such as running an air conditioner to keep indoor temperatures close to their optimal 

comfort levels (see Bharatkumar et al. 2020). This expenditure minimization problem gives us the 

compensated demands of our households.   

Calibrating DR-DRE 2.0 requires two sets of parameters: those related to consumer 

preferences and those related to technical and cost properties of technologies. To calibrate 

consumer preference parameters, we use 30-minute Advanced Metering Infrastructure (AMI) data 

from the ComEd service territory from 2016 to calibrate consumer preferences and the underlying 

utility network. The observed individual loads not only allow us to simulate an optimal network that 

could serve those customers, and hence the cost of serving those customers, but also allow us to 

infer the parameters of the utility function of each customer. As a result, when we simulate 

consumer behavior under different tariff designs, our model can take into account both the cost 

implications of any behavior change and the corresponding change in a consumer’s utility. 

Therefore, our model results in a more realistic depiction of the trade-offs faced by a typical 

electricity consumer: comfort and convenience vs. electric bills.   

Our initial sample includes 55,635 users from three contiguous zip codes in ComEd 

territory, all of which had high levels of AMI roll out in 2016. We further restrict our sample to 

single-family users with a full year’s of load data, with our final sample including 44,185 

consumers. Due to the computing requirements of optimizing investment and operation over all 

8,760 hours of the year for each individual user, based on the methodology of (Kwac et al. 2014), 

we used VISDOM to create a data-dictionary of load shapes, and used a k-means algorithm to 
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cluster households into groups based on the similarity of their usage patterns. We further refined the 

clustering based on the timing of the summer peaks, ending with 45 different cluster of customers 

(for more details on our clustering method, see Esparza et al 2020). Figure 1 shows the average 

hourly load shapes of these clusters. 

Figure 1. Annual average hourly load shapes by cluster 

 

Note: To show the variability in the load shapes, we did not restrict the y-axes to be uniform. 

Once we cluster the households into 45 groups, we use regression and machine-learning 

techniques to calibrate the preference parameters of the customers in each group, as described in 

(Bharatkumar et al. 2020). Using weather data and regression analysis, we separate hourly loads 

into thermal loads, for space heating and cooling, and non-thermal loads. We then use the resulting 

non-thermal loads to calibrate the hourly parameters of the utility function so that our model can 

closely mimic the observed loads under the current tariff they face. Further, we calibrate the HVAC 

system and building material parameters to get synthetic thermal loads that are similar to our 

estimated thermal loads. In this way, we are confident that the model’s synthetic loads will reflect 

the preference parameters specific to the cluster’s representative household under a baseline tariff 

scenario with a flat (non-time varying) volumetric rate, and hence can mimic the behaviour of the 
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same households, with the same underlying preferences, under different, time-varying rates. As 

Table 1 shows, our simulated consumer behaviour under existing ComEd tariff matches the 

observed loads in the smart meter data closely. 

Table 1. Correlation between DR-DRE simulated hourly average loads and observed loads. 

Thermal Loads 

Min 1st Q Median Mean 3rd Q Max 
0.961 0.9769 0.9846 0.9839 0.9931 0.9987 

Non-Thermal Loads 

Min 1st Q Median Mean 3rd Q Max 
0.9793 0.9933 0.9951 0.9945 0.9969 0.9997 

 

To calibrate the technological parameters, we rely on data from NREL for solar PV costs, 

data from Home Advisor for natural-gas-fired distributed generators, and data from Solar Quotes 

for residential battery costs. For our base cost scenario, we assume 30% federal subsidy for solar 

PV and batteries to reflect the current tax credits – i.e. we assume 70% of current all-in costs in our 

simulations. As Spiller et al. 2020 explains, upfront capital costs are a major driver of DER 

adoption. So, to understand if and how tariff designs can affect emission outcomes under different 

future cost declines, we pick two additional cost scenarios from the sensitivity analysis in Spiller et 

al. 2020, based on the cost thresholds that leads to significant solar PV or battery adoption, and 

analyze outcomes under 50% and 10% of current all-in costs for investment in these DERs. These 

scenarios can be plausible given the fast decline in technology costs and the increased subsidies 

policymakers are willing to give to meet their ambitious technology-specific mandates.  

b. Wholesale Energy Market Module 

We also developed a simple economic dispatch model to understand marginal emissions 

rates, and to be able to calculate how changes in consumer behavior affects emissions. This exercise 

might have been unnecessary if we wanted to look at only the effect of current tariff designs in only 

the current policy environment. In that case, relying on empirical estimates of marginal emission 

rates would have been sufficient. However, because we are interested in developing different tariff 

designs that require granular pricing for energy, such as real-time pricing, and because we are 
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interested in analyzing if and how a carbon tax would change our conclusions, a dispatch model is 

necessary.  

We develop a single node, unit commitment and dispatch model, and calibrate it to represent 

the segment of PJM that serves the ComEd territory. We use 2016 data from SNL, EIA, and NREL 

to calibrate operational variables such as fuel costs, minimum and maximum generation, as well as 

the emission rates of generators located within ComEd’s service territory. In addition, we model 

and calibrate imports and exports from other PJM territories using real-time energy data from PJM 

and the marginal fuel data provided by PJM’s Market Monitor. A comparison of our simulated 

dispatch with actual 2016 generation mix and price data shows that our simple model leads to a 

realistic representation of PJM’s ComEd zone (see Table 2.)  

Table 2. Correlation between the hourly prices from the electric dispatch model and real-time PJM prices  

Min 1st Q Median Mean 3rd Q Max 
0.5988 0.8274 0.8956 0.8824 0.9587 0.9991 

 

 We also run the dispatch model with a carbon tax, using the marginal damage estimates 

based on the U.S. Government’s Interagency Working Group’s Social Cost of Carbon (SCC) (EPA, 

2016). The central estimate of the SCC for emissions in 2016, with a 3% discount rate, using 2016 

dollars is $44/ton.1 As Figure 2 below shows, marginal emissions rates change as predicted, going 

down with the higher carbon price. Further, the changes are more significant during off-peak hours 

when transmission constraints are not limiting the resource choices. 

                                                 
1 We also run our model with a lower carbon price of $25/ton as a sensitivity, to consider the possibility that a lower 
carbon price might initially more politically palatable. While the quantitative results differ, qualitative results do not 
change. So, for simplicity, we refer only to the results with a higher carbon price. 
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Figure 2. Seasonal Marginal CO2 Emission Rates 

 

c. Distribution Network Module 

Our third module is the Reference Network Model (RNM), a regulatory tool developed by 

IIT-Comillas. RNM builds an efficient, least-cost electricity distribution network calibrated to a 

specific service territory. RNM uses geospatial information of the service territory, such as roads 

and building footprints, taking into account DER penetration, and then calculates the total costs 

associated with that network. With input from ComEd engineers, we calibrated RNM to the chosen 

zip codes within ComEd’s service territory to ensure that the system built by RNM was consistent 

with major indicators of the ComEd system. This exercise allows us to figure out if, and by how 

much, DER investments can avoid additional network upgrades and thereby future distribution-

level network costs.  

3. Tariff design Scenarios 

Once we calibrate our model, we develop six different tariff designs to understand their 

effects on emissions: a flat tariff, a time-of-use (TOU) tariff, a critical-peak price (CPP) tariff, a 

real-time price (RTP) tariff, and two cost-reflective tariff designs. We chose TOU, CPP, and RTP 

tariffs because these designs are more prevalent in current policy discussions (Revesz and Unel 

2020). In addition, we analyze two tariff designs cost-reflective not only of wholesale marginal 

generation costs but also of generation and network capacity costs to test the potential benefits of 
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such theoretically guided, but not currently implemented, tariff designs. Furthermore, all rates are 

re-calculated for scenarios with a carbon tax. 

The flat tariff is based on the tariff design that ComEd customers faced during 2016. We use 

this tariff structure as the default tariff, but when calculating the rates, we use energy prices from 

our own dispatch model instead of the historical PJM energy prices.2 This flat tariff allows us to test 

that our simulations can replicate the load patterns we observe in the ComEd smart meter data. We 

develop a TOU tariff based on the methodology and time-period choices that ComEd used in their 

most recent time-of-use pilot, but, again, with energy supply charges developed from our own 

dispatch model.3 Similarly, we develop our RTP design based on ComEd’s existing real-time 

pricing design.4 For critical peak pricing, we identify the top 10 hottest days of the year, and 

implement a peak price with a 10:1 peak to off-peak price ratio during the peak period. We use 

ComEd’s rate case filings to determine the charges related to the distribution network and the 

recovery of cost for electricity distribution. We assume revenue neutrality when calculating the 

rates, based on the revenue requirement for ComEd in 2016. These designs, and the specific rates 

are summarized in Table 3 (for more details on calculations of these rates, see Spiller et al. 2020). 

Table 3. Tariff designs with No Carbon Price5 

  Fixed Charge 
($/month)  

Volumetric Charges 
($/kWh)  

Demand Charge ($/kW-
month)  

Peak Periods  

Flat  14.89 $0.075 $4.21 (Jan-May) 
$3.12 (Jun-Dec) 

N/A 

Time-of-Use  14.89 $0.066 -$0.105 $4.21 (Jan-May) 
$3.12 (Jun-Dec) 

Super Peak: 3pm-7pm 
Off-Peak:12am-6am 
Shoulder: 6am-3pm, 

7pm-12am 
Critical Peak Price 14.89 $0.072-$0.287 $4.21 (Jan-May) 

$3.12 (Jun-Dec) 
3pm-7pm on top 10 

hottest days of the year 
Real-Time Pricing 15.28 Real-time price $4.21 (Jan-May) 

$3.12 (Jun-Dec) 
N/A 

                                                 
2 This allows us to meaningfully compare results when we re-estimate a new flat tariff when we are testing a carbon 
price. See Spiller et al (2020) for more description on the approach.  
3 Commonwealth Edison Company (2019). “Rate RTOUPP Residential Time of Use Pricing Pilot”, ILL C.C. No. 10, 
Original Sheet NO. 28.5. Effective Date January 3, 2019 
4 See https://www.comed.com/SiteCollectionDocuments/MyAccount/MyBillUsage/CurrentRates/05_RateBESH.pdf. 
Again, real-time energy prices are from our own dispatch model 
5 See Appendix for rates with carbon prices. 
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Cost-Reflective, 
Fixed residual 
Recovery  

33.18 Real-time price $4.1/kW applied on top 10 
peak hours of the year; 

$0.41/kW applied on top 10 
peak monthly hours 

Variable peak hours of 
year/month 

Cost-Reflective, 
Volumetric 
Residual Recovery 

15.24 Real time price + 
$0.024/kWh 

$4.1/kW applied on top 10 
peak hours of the year; 

$0.41/kW applied on top 10 
peak monthly hours 

Variable peak hours of 
year/month 

 
 

Note: The mean real-time price in our model was $0.026/kWh. 

For cost-reflective tariffs, we rely on design principles outlined in (Perez-Arriaga and 

Bharatkumar 2014; Richard L Revesz and Unel 2020). These designs include multiple components, 

based on underlying cost drivers: 1) a volumetric energy supply charge, 2) coincident-peak demand 

charges for network and generation capacity costs, and 3) a customer-specific charge. Thus, 

customer-specific costs (e.g., billing and metering) determine the customer charge, and the hourly 

real-time rate based on the dispatch model determines the volumetric energy supply charge. In 

addition, we impose a demand charge on the top 10 demand hours in a month for generation 

capacity based on PJM’s capacity auction. For distribution capacity, we impose a demand charge on 

the top 10 demand hours of the year, based on the marginal distribution capacity costs calculated by 

RNM. However, the revenues collected by these cost-reflective tariffs, because they are based on 

forward-looking costs and not the embedded costs, fall short of meeting ComEd’s revenue 

requirement in 2016. To cover up the shortfall, we test two alternatives: CRRf, in which all the 

residual costs are recovered through fixed customer charges (such that the marginal incentives are 

not distorted), and, CRRv, in which all the residual costs are recovered through a volumetric adder.  

4. Effects of Tariff design on Emissions 

There are three underlying channels through which tariff design can affect emissions. 

Changes in Load Profiles: A change in tariff design leads to a change in the load profile of the 

customer. Depending on how the relative prices change between time periods, consumers can 

increase or decrease their consumption in a given period. The marginal emission rates in each 

period then determines the resulting emissions caused by changes in consumption patterns. 

Therefore, the total emissions in a year could increase or decrease based on the patterns of this load 

shifting.  
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DER Adoption: A change in tariff design affects the incentives of end-users to adopt different DER 

technologies. If, as a result of a tariff design change, consumers adopt electricity-generating DERs 

and thus reduce their net demand for withdrawals from the grid (or even export excess generation), 

this would reduce the need for the bulk system generator to operate. Thus, DER adoption can 

reduce emissions by both offsetting the onsite consumption of the owner and by injecting electricity 

to the grid to meet the demand of the other customers. With this channel, the amount of emission 

reductions would depend on how much net load reduction DERs cause at a given hour, and the 

corresponding marginal emission rate in that hour.  

DER operation: tariff design affects how customers operate DERs and electric heat pumps. If a 

given tariff design leads customers to adopt and operate emitting DERs, then the total emissions 

impact depends on the relative emissions of the DER compared to the marginal emissions rate of 

the grid. If a given tariff design leads customers to adopt batteries, then the total emissions impact 

depends also on the marginal emissions rates during charging and discharging periods, and the total 

emissions may in fact increase as a result of battery operation. Similarly, emissions from using heat 

pumps depend on when they operate and the marginal emissions rates. The net emissions effects of 

this switch would depend on how the increase in emissions from the grid compare to the reduction 

in gas usage for heating. 

To understand all these effects, we run simulations for each design and carbon price 

combination. Our modeling setup allows us to separately calculate the effect of all these three 

mechanisms. For each tariff design, we do an initial run in which we do not allow any DER 

investment to isolate the effect of tariff design on load patterns. Then, we allow investment in DERs 

to see how tariff design affects emissions via the second and third channels. To calculate the 

emissions that result from electricity use under each design, we first calculate the marginal 

emissions rates using our dispatch model, with and without carbon prices. Then, we multiply the 

predicted hourly loads of each cluster with the marginal emissions rate in that hour for each 

pollutant for each carbon pricing scenario, and sum over the 8,760 hours of the year. Underlying 

this approach is an assumption that our sample is small enough compared to the entire ComEd zone 

that any change in their load, even including the heat pumps, would be only marginal and – in 

contrast to the carbon price – not affect the order of dispatch in the wholesale market. If there is 
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investment in emitting DERs, we calculate the additional emissions by multiplying its operation 

profile by its emission rate, and add to the grid emissions to calculate the total emissions. 

a. The Effects of Tariff designs on Emissions Without a Carbon Tax 

 First, to test the effect of the load-shifting channel, we run our simulations without allowing 

investment in DERs. The effect of load shifting under our tariff design scenarios compared to a flat 

rate is ambiguous. As Figure 3 shows, the changes in consumer load profiles in response to changes 

in tariff designs without DER investment are as expected: compared to a flat rate, consumers under 

time-variant rates reduce their electricity usage whenever relative prices are higher, and shift that 

usage to lower priced periods.  

The amount of load shift compared to the flat tariff depends on the relative strength of the 

price signal for the most expensive time periods. For example, because the relative prices under 

TOU are consistently higher during the peak time periods, average peak loads under TOU tariffs 

decline more compared to CPP tariffs, which provide a more intense peak price signal but for a 

limited number of hours. Therefore, the average magnitude of the change in consumer behavior 

under CPP is less compared to the other tariff designs.  

Further, consistent with previous literature (Holladay, Price, and Wanamaker 2015), our 

results show that the total annual electricity consumption could increase with different tariff 

designs, even if by small amounts. In other words, consumers take advantage of lower priced 

electricity during non-peak hours. This effect is especially significant for cost-reflective tariffs, 

which have very low volumetric charges during off-peak hours. Consequently, whether the total 

emissions increase or decrease depends on the differences between the marginal emission rates of 

higher- and lower-priced time periods.  
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Figure 3. Annual average hourly net load profiles of an example cluster under different tariff designs when no 
investment is allowed 

 

 

 The main results on the emissions impacts of tariff design when there is no carbon tax are 

summarized in Figure 4.6 Total emissions are the total CO2 emissions that stem from electricity and 

gas consumption of our 44,185 households. As a consequence of the relatively limited consumption 

pattern changes when no DER investment is allowed, the CO2 emissions under TOU, CPP, and 

RTP are similar to emissions with flat tariffs, either slightly above or slightly below (see the left 

bars for each tariff design in Figure 4).7 Moving to a CRRv increases total emissions slightly 

because there is a high enough increase in consumption during non-peak hours. There are, however, 

significant increases in emissions under CRRf. With CRRf, when the residual is recovered with a 

fixed charge and hence the volumetric electricity charge is low, consumers find it (privately) 

beneficial to switch to electric heating from gas heating. As a result, their electricity consumption, 

                                                 
6 Numerical tables are provided in the appendix.  
7 For brevity, we discuss only the CO2 emissions in the text. The results for SO2 and NOx emissions can be found in the 
appendix. 
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and hence the emissions from the grid, increase compared to a flat tariff. Even though the emissions 

from gas use decrease, the increase in emissions from electricity use is high enough to offset that 

decrease with the 2016 marginal emission rates on the part of the PJM system we analyze.8 This 

dynamic highlights that electrification, due to the existing grid mix and operations, might lead to 

perverse results in the short run. Notably, however, changes in the future mix of electric generating 

resources are likely to change this result.  

Figure 4. Annual CO2 emissions in thousand metric tons under different tariff designs without a carbon tax 

 

Notes: The totals are the annual sums of emissions from of each cluster, weighted by the number of households in each 
cluster. For each tariff design, the left bar reflects the emissions under the base cost scenario with 70% all-in costs, and 
the right bar reflects the emissions under 50% all-in costs. Dark blue shows emissions from the grid, and light blue 
shows emissions associated with natural gas use for heating. 

 

When we allow for DER investment in our base cost scenario – current costs with a 30% 

federal subsidy – our results do not change (so, still can be depicted by the left bars of Figure 4) 

                                                 
8 In addition, higher efficiency losses related to electricity transmission and distribution compared to natural gas 
delivery offset some of the potential gains of air source heat pumps.  
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because, given this cost structure, none of the tariff designs we study provide enough annual bill 

savings for the customers to make it profitable to adopt DERs in our sample.9 Even with net 

metering using flat rates, in which consumers get compensated the volumetric rate for their 

injections regardless of when that injection occurs, the financial incentives are not high enough to 

justify the upfront capital costs.10 Incentives for solar PV adoption are even worse with other tariff 

designs, when the highest compensation occurs during peak periods, which are usually in the late 

afternoon and early evening. Because the peak PV generation is mid-day, this mismatch with peak 

price periods makes it difficult for residential customers to recover their investment costs under net 

metering. As a result, and consistent with what ComEd observed during the same period for their 

existing tariffs, no PV adoption occurs under any tariff structure. Furthermore, our simulation 

results find no investment in any other DERs under flat, TOU, CPP, or RTP tariffs, eliminating the 

DER adoption and operation as channels to reduce emissions. Consequently, total emissions do not 

change under these tariffs compared to the no-investment outcomes, under the base cost scenario. 

Thus, the only changes in emissions in this base case comes from load shifting and electrification of 

heating loads. 

To understand if and how tariff designs might affect emission outcomes in cost conditions 

under which consumers find it privately optimal to adopt DERs, we also ran our simulations with a 

hypothetical reduction in future costs to 50% of the current all-in private costs of DERs (see the 

right panels for each tariff design in Figure 4).11 In this scenario, we see that consumers adopt solar 

PVs under some of the tariff designs, but they still find batteries too expensive to be privately 

optimal. We see solar PV adoption, and hence reduction in emissions from the grid, under flat, 

TOU, CPP, and RTP tariffs. With TOU tariffs, consumers adopting PV not only offset their own 

load, but also displace bulk system generation needed for other customers, leading to “negative” 

grid electricity emissions for our sample, even if minimal.  

                                                 
9 See Spiller et al. (2020) for a discussion of subsidy levels that would enable customer adoption under different tariff 
designs.  
10 Sensitivity analysis in Spiller et al (2020) show that for higher supply rates, with net metering, we get adoption of 
solar PVs with flat tariffs. 
11 Note that such reduction might actually be achieved with state subsidies on top of the 30% federal subsidy, or by 
another 20% reduction in costs on top of the 30% federal subsidy, so could be realized in the near future given the 
ambitious goals of many U.S. states. 
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Such investment incentives is most apparent under the TOU and RTP tariffs. The net 

metering framework allows consumers to get compensated with a higher price, compared to the 

other tariffs, during a relatively greater number of hours that correspond with solar generation. For 

example, the CPP and the two CRR rates have high prices for only a small number of hours per 

year, and the flat rate never has any high prices during the day. As such, households have higher 

incentives to invest under TOU and RTP tariffs compared to other tariff designs, leading to the 

highest emission reductions.  

b. The Effects of a Pigouvian Carbon Tax 

Next, we look at the emissions impacts of tariff design with a complete carbon tax – i.e. on 

both wholesale energy market CO2 emissions as well as natural gas used for heating.  Using the 

Interagency Working Group’s Social Cost of Carbon, we impose a $44/ton Pigouvian tax on all 

CO2 emissions, including on natural gas used for heating, recalculate our supply rates, and run our 

model again.  

Incorporating a carbon tax would not only change the dispatch order in the wholesale energy 

markets, but would also provide better price signals about the social marginal cost of electricity. As 

a result, to the extent a carbon tax changes the relative prices between time periods, consumers 

would change their load profiles accordingly. In addition, under more time-varying rates, a carbon 

tax would increase the value of DER injections when marginal emission rates are high, potentially 

leading to a higher deployment of DERs. The effect on heating electrification, on the other hand, is 

ambiguous. On the one hand, it could make electricity more expensive on average, which would 

discourage electrification. On the other hand, with time-granular tariff designs, prices during 

cleaner time periods might be low enough to induce switching from gas heating (also subject to the 

carbon tax in our scenario), especially because heating demand is likely to be higher during the 

night when electricity prices tend to be lower. 
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Figure 6. Annual average hourly net load profiles of the largest cluster under different tariff designs with and without a 
carbon tax when no DER investment is allowed with our base case cost and subsidy assumptions 

 

Notes: The y- axes are not uniform. For simplicity, we are showing only the largest cluster. The aggregated load shapes 
are in Appendix. Load shapes of all clusters for all tariff designs can be found in the online appendix, available here. 

Again, to understand the effect of emissions via the load-shifting channel under a carbon 

tax, we first run our simulations without allowing DER investment. Given that we are using an 

expenditure minimization, and calculating compensated demands, as Figure 6 shows, a carbon tax 

changes load profiles only to the extent that it changes relative prices between different hours. For 

example, because the relative prices between different time periods under flat rates do not change 

with carbon tax, the compensated demand stays the same, not leading to any changes in the load 

profiles. However, the load profiles observed under the other tariffs change significantly, reducing 

consumption during periods with higher marginal emission rates (and, hence, higher prices) and 

increasing consumption during periods with lower marginal emission rates that are shown in Figure 

2. In other words, flat rates dull the price signals that a carbon tax might give by breaking the link 

between the wholesale price signals and the retail price signals.  
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Just as in the case above without a carbon tax, we see that there is very little difference in 

total CO2 emissions between the flat rate, TOU, CPP and RTP tariff scenarios due to the load 

shifting channel. CRRf continues to lead to heat pump investment, significantly increasing 

electricity usage, and hence emissions compared to the flat rate with a carbon tax. CRRv now 

reduces emissions compared to the flat tariff. Because the volumetric rates under this tariff design 

are higher compared to those in CRRf, CRRv provides higher incentives for electricity 

conservation, and therefore the increase in electricity use due to electrification is not as high 

compared to CRRf.  

Because our modeling looks at expenditure minimization and compensated demands, our 

results are mostly relevant for various carbon tax and dividend policy proposals, in which a carbon 

tax is coupled with payments that could help reduce the income effect of the tax. If the magnitude 

of those payments are in line with customers’ compensating variations, the resulting demand 

changes would be more in line with the compensated demands that our model simulate. And our 

results would imply that, without time-variant rates, consumers would not change their load shapes, 

and the only emission reductions would come from the changes in the generation mix. Therefore, 

disregarding the importance of the end-user price signals in designing carbon taxes would leave an 

important emission reduction channel underutilized. 
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Figure 5. Annual CO2 emissions in thousand metric tons under different tariff designs, with a $44/ton carbon tax on all 
emitting power generation and natural gas used for heating. 

 

Notes: The totals are the annual sums of emissions from of each cluster, weighted by the number of households in each 
cluster. For each tariff design, the left bar reflects the emissions under the base cost scenario with 70% all-in costs, and 
the right bar reflects the emissions under 50% all-in costs. Dark blue shows emissions from the grid, and light blue 
shows emissions associated with natural gas use for heating. 

 

Next, we run our simulations allowing DER investment. Even though a carbon tax reduces 

the magnitude of both grid and DER emissions in all scenarios (compare Figure 4 and  

Figure 5), our qualitative results mostly stay the same. Even with a $44 carbon tax, no tariff 

design leads to PV or battery investment under our base cost scenario (the left bars in Figure 5), 

again eliminating the DER deployment and operation as potential channels to reduce emissions for 

most tariff designs. In this scenario, most emission changes come from load shifting.  

If DER costs further decline (or receive additional subsidies), the combination of a carbon 

tax and tariff design leads to different investment patterns. As Figure 6 shows, net load profiles 

change significantly under a carbon tax if DER costs decline to 50% of current all-in-costs. Now, 
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we observe more investment in solar PVs even under flat tariffs, CPP and CRRv, leading to net 

injections under these tariff designs as well.  

How a carbon tax changes emission outcomes depends on which of the two following 

countervailing effects dominate. A carbon tax increases the volumetric prices to account for the 

value of emissions, and hence increasing the compensation a consumer could get for injections and 

adoption incentives. However, at the same time, a carbon tax changes the grid operations, 

internalizing emissions as a cost in the dispatch order and making the grid cleaner, hence reducing 

the amount of emissions DERs can potentially displace.  

Comparing the right-side bars of Figure 4 and Figure 5 for each tariff design highlights this 

dynamic. For tariff designs that were sufficient to incentivize high levels of solar PV adoption even 

without a carbon tax, such as the TOU and RTP tariffs, the second effect dominates. While the 

consumers continue to adopt solar PVs, because a carbon tax reduces marginal emission rates, 

injections from those systems no longer avoid as much emissions from the grid. Therefore, the 

decrease in grid emissions from DER adoption is much lower under a carbon tax. However, for flat 

tariffs, CPP and CRRv, the first effect dominates. Because consumers now face higher volumetric 

rates due to the carbon tax, the increased DER compensation increases enough to drive more solar 

PV adoption to reduce emissions further.  
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Figure 6. Annual average hourly net load profiles of the largest cluster under different tariff designs with and without a 
carbon tax when investment is allowed, 50% All-in Costs 

 

Notes: The y- axes are not uniform. For simplicity, we are showing only the largest cluster. The aggregated load shapes 
are in Appendix. Load shapes of all clusters for all tariff designs can be found in the online appendix, available here. 

Our simulations highlight another important, but not surprising, result. Even though tariff 

design can affect load shifting and DER adoption incentives, the majority of the emission 

reductions due to the carbon tax result from the changes in the dispatch order, and hence the 

changes in marginal emission rates. Therefore, a robust carbon price signal that affects the dispatch 

order in energy markets and make dirty generation less competitive remains the key component for 

addressing electricity sector CO2 emissions.  



27 

 

Table 4. Causes of grid emission reductions under each tariff design in thousand metric tons 

  
Flat 
Tariff 

Time-of-
Use 
Tariff 
(TOU) 

Critical-
Peak 
Pricing 
Tariff 
(CPP) 

Real-
Time 
Pricing 
Tariff 
(RTP) 

Cost-
Reflective 
Tariff, 
Fixed 
residual 
recovery 
(CRRf) 

Cost-
Reflective 
Tariff, 
Volumetric 
residual 
recovery 
(CRRv) 

Changes in dispatch order  56 57 56 56 124 59 

Load shifting 0 0.5 -0.3 1 -54 -49 
Notes: The emission reductions due to the changes in dispatch order is the difference in emissions given different 
marginal emission rates with and without a carbon price, holding constant the load profile without a carbon tax. The 
emission reductions due to the changes in load shifting is the difference in emissions between the load profiles with and 
without a carbon prices, holding constant the marginal emission rates with a carbon price. The net change in grid 
emissions between Figures 4 and 5 is the sum of the two effects. A negative indicates an increase in emissions.   

c. The Effects of an Incomplete Carbon Price 

In the U.S., states and the federal government share the responsibility for energy and 

environmental regulation. Wholesale markets are generally subject to the jurisdiction of the Federal 

Energy Regulatory Commission, and the retail tariffs are regulated by state regulators. As a result, 

there can be efficiency losses when different agencies do not coordinate their policies. For example, 

in the case of carbon pricing like the one under discussion in NYISO, a grid operator can impose a 

carbon price only in the electricity market, but that would leave CO2 emissions from natural gas 

combustion for heating or small, behind-the-meter distributed generation unpriced. And, if the state 

regulators decide not to impose a tax on emissions from all uses of fossil fuels including natural gas 

for direct residential use, the possibility of carbon leakage arises.  

To understand the implications of such leakage potential, we ran simulations in which 

natural gas for heating and the emitting DERs are not subject to a carbon tax. Our results show that 

consumers do not invest in emitting distributed generation even in this scenario. However, we get 

higher emissions from gas heating under this scenario. Comparing the bars for electric and gas 

emissions in 

Figure 5 and Figure 7 for the same tariff designs and cost scenarios, we see that an 

incomplete carbon tax limited just to the wholesale electricity market reduces emissions from the 

grid but increases emissions from gas heating for CRRf and CRRv compared to both the economy-
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wide carbon tax and the scenarios without a carbon tax. This leakage occurs because heat pumps 

become a less attractive option when the carbon tax is only applied in the wholesale electricity 

market because electricity prices increase relative to natural gas prices. In the case of the CRRv 

design this leakage is high enough to offset the emission reductions achieved through a carbon tax 

changing the dispatch order, and leads to a net increase in emissions compared to CRRv rate with 

an economy wide carbon tax.  

Figure 7 Annual CO2 emissions in metric tons under different emissions in thousand metric tons under different tariff 
designs with a $44/ton carbon tax applied only on wholesale energy electricity market. 

 

Notes: The totals are the annual sums of emissions from of each cluster, weighted by the number of households in each 
cluster. For each tariff design, the left bar reflects the emissions under the base cost scenario with 70% all-in costs, and 
the right bar reflects the emissions under 50% all-in costs. Dark blue shows emissions from the grid, and light blue 
shows emissions associated with natural gas use for heating. 

 

Such leakage from an incomplete carbon price is especially important for local pollutants 

and environmental justice considerations. Because any substitution between grid electricity and gas 

heating would change where local pollutants are emitted and how they are dispersed, the exposed 
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population, and, hence, the external costs in terms of health damages under different tariffs would 

differ. Importantly, onsite gas heating by consumers will move emissions away from bulk system 

generators closer to load centers, likely exposing a higher number of people to these pollutants. 

Further, the demographics of the exposed populations will also be different. However, this type of 

environmental justice analysis is beyond the scope of this paper. 

d. The Effects of Batteries 

Different tariff designs can make batteries more attractive and drive more investment, yet 

might create more emissions due to how they are operated in response to the tariff. As batteries are 

essential to decarbonization, it is important to understand how tariff design can affect behind-the-

meter battery adoption and operation, and, in turn, emissions. However, none of our initial cost 

scenarios led to battery adoption, highlighting the fact that batteries are still too expensive for a 

widespread behind-the-meter adoption.  

So, as explained in Spiller et al. 2020, we ran additional cost and policy scenarios to 

understand when it becomes privately optimal for customers to adopt batteries, and analyze the 

emission implications of batteries for those scenarios. We observe battery adoption when costs fall 

down to 10% of the current all-in-cost and when net metering policies are modified to compensate 

residential battery owners for electricity injections back into the grid at a rate lower than the full 

retail rate. This scenario reduces the compensation a consumer gets for injections, and, hence, 

strengthens the incentives for battery adoption by increasing the relative value of storing electricity 

generated by solar panels for later consumption.  

Table 5 shows how batteries affect emissions under this cost and policy scenario. To show 

the effects of battery adoption and operation on emissions, we disaggregate grid emissions into 

three categories: emissions from consumption, reduction in emissions from solar PV generation, 

and net emissions from operation of batteries. The first category reflects the emissions that result 

for consumers’ thermal and non-thermal loads. The second category reflects the reductions in 

emissions that result from solar PV generation. The final term reflects the difference between the 

emissions at times when a battery is charging and the emissions at times when it is discharging.12 

                                                 
12 It is important to note that, even some might consider that charging batteries do not increase emissions 

because they are charged “from” the on-site solar PV generation, there is an emissions opportunity cost of charging of 
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We calculate emissions by multiplying the hourly profiles of consumption and generation, and 

batteries with the hourly marginal emission rates, and summing over the year.  

Table 5. Annual CO2 emissions from batteries in thousand metric tons under different tariff designs without a carbon 
tax with 10% of All-In Costs. 

  Flat Tariff 
Time-of-
Use Tariff 
(TOU) 

Critical-
Peak 
Pricing 
Tariff 
(CPP) 

Real-
Time 
Pricing 
Tariff 
(RTP) 

Cost-
Reflective 
Tariff, 
Fixed 
residual 
recovery 
(CRRf) 

Cost-
Reflective 
Tariff, 
Volumetric 
residual 
recovery 
(CRRv) 

No Battery Investment Allowed 

Total Emissions  199 198 199 199 264 219 
Consumption 

Emissions 315 320 316 314 406 406 

Solar PV Generation -235 -242 -236 -234 -143 -221 

Battery Operations - - - - - - 
Gas for Heating 

Emissions 120 120 120 120 1 33 
Percentage difference 

in total emissions 
compared to flat tariff - -0.5% 0.0% 0.0% 32.7% 10.1% 

Battery Investment Allowed 

Total Emissions  199 187 199 199 264 219 

Consumption 
Emissions 315 314 316 314 406 406 

Solar PV Generation -235 -248 -236 -234 -143 -221 

Battery Operations - 0.2 - - - - 

Gas for Heating 
Emissions 120 120 120 120 1 33 

Percentage difference 
in total emissions 

compared to flat tariff - -6.0% 0.0% 0.0% 32.7% 10.1% 

Notes: The totals are the annual sums of emissions from of each cluster, weighted by the number of households in each 
cluster. Consumption emissions are calculated by multiplying the load profile for thermal and non-thermal consumption 
by hourly marginal emission rates. Emissions avoided by solar PVs are calculated by multiplying their generation by 

                                                 

batteries. Using on-site solar PV generation to charge batteries means that it cannot be injected to the grid or be used for 
consumption, and hence it foregoes the opportunity to reduce emissions that would have occurred if, all else constant, 
there were no batteries. Calculating the battery emissions using the hourly marginal emission rates during charging and 
discharging takes this opportunity cost into account.  
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hourly marginal emission rates. Emissions from battery operations are the difference between the emissions caused 
during charging periods and the emissions avoided during discharging periods, calculated by hourly marginal emission 
rates. 

 

To understand the effect of battery adoption, we first run our simulation without allowing 

investment in batteries. The first panel of Table 5 shows this baseline. Note that, because we are 

looking at a case where costs are 10% of all-in-costs for all DER technologies, we also observe 

solar PV adoption under all tariff designs, unlike our earlier discussion. 

When we allow battery investment, as the second panel of Table 5 shows, we get minimal 

battery investment under the TOU tariff and no adoption under any other tariff. This result is due to 

the arbitrage opportunities between peak and off-peak time periods that TOU allows continuously 

throughout the year. As directionally consistent with what California’s Self-Generation Incentive 

Program observed and what the literature suggests (Carson and Novan 2013; Shrader et al. 2020; 

Revesz and Unel 2018; Hittinger and Azevedo 2015), the charging and discharging of batteries lead 

to an increase, even if minimal, in emissions. In other words, because the TOU periods are not well 

aligned with the times when the marginal emission are higher, all else equal, the operation of 

batteries leads to an increase in emissions.  

However, our results also reveal a novel insight. This low battery cost and reduced NEM 

compensation scenario not only makes it privately optimal to invest in batteries, but the ability to 

store electricity makes it more attractive to invest in more solar PV. Comparing solar PV generation 

when no households are allowed to invest in batteries compared to a scenario when we allow 

battery investment (i.e. comparing the first and second panels of Table 5. Annual CO2 emissions 

from batteries in thousand metric tons under different tariff designs without a carbon tax), we see 

that consumers install bigger solar panels when they also install batteries. Therefore, because 

incentivizing batteries also incentives more clean generation that can be used to offset grid 

electricity, the total emissions go down, despite the increase in emissions due to battery operations. 

Even though the difference in the average installed PV size is modest, 5 kW vs. 4.7 kW, the 

additional generation reduces emissions by multiple orders of magnitude compared to the emission 

increases from the operation of the batteries. To the best of our knowledge, our results are the first 

to show this endogenous technology portfolio effect on emissions.  
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Next, we test whether these results change when there is a carbon tax.13 Comparing Table 5 

and Table 6 shows that a carbon tax, unsurprisingly, reduces total emissions. Similar to earlier 

results, the main reason for the changes in emission outcomes is the change in the dispatch order 

due to the tax. Because the marginal emission rates are lower, emissions from consumption are 

lower. At the same time, now that the grid is cleaner, solar PV generation can displace less 

emissions. However, an analysis on the emissions impacts due to the changes in DER adoption and 

operation shows interesting insights. 

 Because a carbon tax makes electricity more expensive, it increases incentives to adopt 

batteries. So, with a carbon tax, we see battery adoption under all tariffs other than CRRf. 

Comparing cases where we do not allow battery investment to cases where we do (i.e. the first and 

second panels of Table 6. Annual CO2 emissions from batteries in metric tons under different tariff 

designs with a $44/ton carbon tax on all sources, we see that investment in batteries also increase 

investment in solar panels. And even though the difference in the average installed sizes are small, 

0.2 to 0.3 kWs, the additional solar PV installation leads to a reduction in the total emissions. So, 

again, there is a reduction in emissions due to the technology portfolio effect 

However, we find that operation of batteries do not always lead to an increase in battery 

driven emissions. Looking at the bottom panel of Table 7, we see that emissions due to battery 

operations are positive under flat, TOU, and CPP tariffs – when the price signals are coarse. 

However, emissions from battery operations are negative under RTP and CRRv, where the price 

signals can granularly reflect the carbon tax. In other words, a carbon tax, by itself, is not sufficient 

to align the arbitrage incentives for behind-the-meter batteries with emission reduction goals if 

retail tariffs are not granular enough to transmit that wholesale market price signal inclusive of a 

carbon tax. This result, again, highlights the importance of considering tariff design as a core 

element when designing energy and climate policy.   

Table 6. Annual CO2 emissions from batteries in metric tons under different tariff designs with a $44/ton carbon tax on 
all sources 

                                                 
13 For simplicity, we are showing only the scenarios with a complete carbon tax. While the magnitude of the 

effects change under an incomplete carbon tax, the qualitative results do not change. 
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Flat 
Tariff 

Time-of-
Use Tariff 
(TOU) 

Critical-Peak 
Pricing 
Tariff 
(CPP) 

Real-Time 
Pricing 
Tariff 
(RTP) 

Cost-
Reflective 
Tariff, 
Fixed 
residual 
recovery 
(CRRf) 

Cost-
Reflective 
Tariff, 
Volumetric 
residual 
recovery 
(CRRv) 

No Battery Investment Allowed 

Total Emissions  174 172 175 173 148 145 
Consumption 

Emissions 245 248 246 243 304 317 

Solar PV Generation -190 -196 -191 -190 -157 -193 

Battery Operations - - - - - - 
Gas for Heating 

Emissions 120 120 120 120 0 21 
Percentage 

difference in total 
emissions compared 

to flat tariff - -1.1% 0.6% -0.6% -14.9% -16.7% 
Percentage 

difference in total 
emissions compared 
to same tariff design 
without a carbon tax 

(Table 5) -13% -13% -12% -13% -44% -34% 

Battery Investment Allowed 

Total Emissions  155 151 157 151 148 124 

Consumption 
Emissions 234 232 233 231 304 314 

Solar PV Generation -203 -201 -198 -198 -157 -198 

Battery Operations 4 0.4 4 -2 - -3 

Gas for Heating 
Emissions 120 120 120 119 0 11 

Percentage 
difference in total 

emissions compared 
to flat tariff - -2.6% 1.3% -2.6% -4.5% -20.0% 

Percentage 
difference in total 

emissions compared 
to same tariff design 
without a carbon tax 

(Table 5) -22% -19% -21% -24% -44% -43% 
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Notes: The totals are the annual sums of emissions from of each cluster, weighted by the number of households in each 
cluster. Consumption emissions are calculated by multiplying the load profile for thermal and non-thermal consumption 
by hourly marginal emission rates. Emissions avoided by solar PVs are calculated by multiplying their generation by 
hourly marginal emission rates. Emissions from battery operations are the difference between the emissions caused 
during charging periods and the emissions avoided during discharging periods, calculated by hourly marginal emission 
rates. 

5. Discussion  

With the emerging focus on the role of DERs and electrification in achieving climate policy 

goals, there has been a surge of attention on the inefficiencies in residential electricity tariff designs, 

specifically the discrepancies between the typical flat volumetric rates and the time-varying social 

marginal cost of electricity. With it there has been a surge in calls for residential rate reforms to 

ensure socially efficient deployment of DERs. Many states from Hawaii to Illinois to New York are 

in the various stages of reforming their retail tariffs, with the goal of increasing DER deployment 

and electrification, and, at the same time, reducing emissions.  

In theory, improving the time-granularity of the tariff designs to more accurately reflect 

social marginal cost should lead to more efficient DER deployment and operation, and, reduce CO2 

emissions. And, with a theoretically ideal cost-reflective tariff, which would include a carbon tax, 

we should get DER adoption only when they are socially efficient.  

Our results show that in our setting in ComEd, given current capital costs of DERs, and 

associated federal subsidies, adoption of neither solar PVs nor batteries is privately optimal under 

any type of tariff design scenarios we considered. Even a carbon tax, which should align private 

incentives for DER adoption more with socially beneficial outcomes, does not lead to adoption of 

solar PVs or behind-the-meter batteries under any of the tariff designs we tested, given the high 

upfront cost of the technology and low electricity rates in the study area. As a result, contrary to the 

common expectation of policymakers, TOU, CPP, and RTP tariffs lead only to load shifting from 

higher-priced time periods to lower-priced time periods, with minimal net effects on emissions 

compared to flat tariffs. Given that these three designs are the most commonly discussed reform 

options, our results highlight the importance of analyzing emission implications of tariff designs for 

policymakers. 

Even under a cost-reflective tariff with a carbon tax, we get minimal solar PV adoption, 

implying that DERs are not privately optimal under the current cost structures and electricity price 
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levels in the ComEd service territory, even when combined with a $44/ton carbon tax. And, while 

we get some electrification under the cost-reflective tariffs we test, only those consumers with high 

enough space heating requirements (and low enough volumetric rates) find it individually rational 

to switch to electric heating. Furthermore, with CRRf, emissions increase given the extra load from 

electric heating, leading to significant external damages, potentially offsetting other welfare gains 

that could be achieved by avoided capacity investment costs achieved under this tariff. Only in 

CRRv with a carbon tax do some customers find it privately optimal to switch to electric heating 

and invest in a solar panel at the same time, leading to significantly lower emissions.  

Our results imply that, without significant cost declines or larger subsidies, more cost-

reflective tariff designs would not likely to lead to higher DER deployment or significant reductions 

in emissions in the ComEd service territory. On the contrary, implementing cost reflective tariffs 

could lead to electrification and higher electricity use, and increasing emissions, especially when 

there is no carbon price signal. When we run our simulations under lower costs, we see that 

consumers may find it privately optimal to invest in DERs, and DERs might indeed lead to lower 

emissions. In those scenarios, tariff designs and if and how a carbon tax is imposed significantly 

affects the emission outcomes. These results highlight the importance of considering the emission 

implications in tariff design reform discussions. Given that usually only TOU and CPP designs are 

considered in most tariff reform discussions (Revesz and Unel 2020), and an economy-wide carbon 

tax is far from reality, tariff design reforms that intend to incentivize DERs and electrification to 

help decarbonize the grid might lead to unintended consequences if policymakers do not take 

emissions into account.  

An important caveat is that the direction and magnitude of our results depend on the 

generation mix of a given grid, so they are time- and location-dependent. Our findings are particular 

to the Chicago area in 2016. The same analysis might lead to different conclusions in other parts of 

the country. Furthermore, even at a given location, as the generation mix changes over time, the 

emissions implications will change accordingly. As clean resources such as wind start to meet 

baseload demand during off-peak hours, reducing marginal emission rates during those hours, even 

to zero, the load shifted to those hours would not increase emissions. Thus, with a generation mix 

dominated by large renewable resources, more advanced tariff designs are more likely to reduce net 

emissions, even with increased demand due to electrification.  
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In addition, it is important to note that we simulate compensated demands, which is less 

elastic than ordinary Marshallian demands. Thus, our results are likely to overestimate the demand 

we would observe if any of our tariffs were to be implemented. Therefore, the increase in system 

costs and emissions should be treated as an upper bound. Similarly, because we do not simulate the 

dynamic interaction between the changes in demand and the wholesale energy market prices, we 

overestimate the system costs.  

6. Conclusion 

In conclusion, our research provides important insights on how to analyze the effect of tariff 

design on emission consequences of DER adoption and use. Using an economics-engineering 

simulation model, we show that DER deployment and use is sensitive to underlying tariff design, 

and that, depending on the tariff design, more advanced tariff designs might end up increasing 

emissions – at least in the short term and in places with relatively dirty generation on the margin. 

These results emphasize the importance of pairing DER policy initiatives with decarbonization 

efforts at the wholesale electricity level. Complementary to existing results in the literature, our 

results show that if peak price periods in a given tariff design do not correspond well with periods 

with higher marginal emission rates, DER operation or load shifting might increase emissions.  

Finally, we show that even if there is a carbon price at the wholesale level, the emission 

consequences of DERs will depend on whether retail customers directly see wholesale level price 

signals, at what granularity, and whether the same carbon price also applies to natural gas use for 

heating and distributed generation. This result shows that the effectiveness of other climate policies 

such as a carbon tax can vary depending on the granularity of tariff designs, highlighting the 

importance of considering retail tariff design in climate policy discussions. 
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Appendix 

Table A1. Tariff designs with $44 per ton Carbon Price 

  Fixed Charge 
($/month)  

Volumetric Charges 
($/kWh)  

Demand Charge 
($/kW)  

Peak Periods  

Flat Tariff 14.89 $0.093 $4.21 (Jan-May) 
$3.12 (Jun-Dec) 

N/A 

Time-of-Use Tariff 14.89 $0.063 -$0.143 $4.21 (Jan-May) 
$3.12 (Jun-Dec) 

Super Peak: 3pm-7pm 
Off-Peak:12am-6am 

Shoulder: 6am-3pm, 7pm-
12am 

Critical Peak Price 
Tariff 

14.89 $0.09-$0.44 $4.21 (Jan-May) 
$3.12 (Jun-Dec) 

3 pm-7pm on top 10 hottest 
days of the year 

Real-Time Pricing 
Tariff 

15.28 Real-time price $4.21 (Jan-May) 
$3.12 (Jun-Dec) 

N/A 

Cost-Reflective 
Tariff, Fixed 
residual Recovery  

33.18 Real-time price $4.1/kW applied on 
top 10 peak hours of 

the year; $.41/kW 
applied on top 10 peak 

monthly hours 

Variable peak hours of 
year/month 

Cost-Reflective 
Tariff, Volumetric 
Residual Recovery 

15.24 Real time price + 
$0.024/kWh 

$4.1/kW applied on 
top 10 peak hours of 

the year; $.41/kW 
applied on top 10 peak 

monthly hours 

Variable peak hours of 
year/month 
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Figure A1. Weighted Mean Hourly Profile of Gas and Electricity Use, with 50% All-In Costs, 
Without a Carbon Tax 

 

Notes: The y-axes are not uniform. The gas use is converted to kWh using 29.3001kWh per therm.  

 

 

 

 

 

 

 

 

 

 

 

 



43 

 

Figure A2. Weighted Mean Hourly Profile of Gas and Electricity Use, with 50% All-In Costs, 
Under Complete Carbon Tax 

 

Notes: The y-axes are not uniform. The gas use is converted to kWh using 29.3001kWh per therm.  
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Table A2: Annual CO2 emissions in thousand metric tons under different tariff designs without a carbon tax 

  
Flat 
Tariff 

Time-of-
Use 
Tariff 
(TOU) 

Critical-
Peak 
Pricing 
Tariff 
(CPP) 

Real-
Time 
Pricing 
Tariff 
(RTP) 

Cost-
Reflective 
Tariff, 
Fixed 
residual 
recovery 
(CRRf) 

Cost-
Reflective 
Tariff, 
Volumetric 
residual 
recovery 
(CRRv) 

No DER Investment Allowed 

Total CO2 Emissions  327 327 328 326 398 337 

Grid Emissions 207 207 208 207 388 217 

Gas for Heating Emissions 120 120 120 120 9 120 
Percentage difference in 

total emissions compared 
to flat tariff - 0.0% 0.3% -0.3% 21.7% 3.1% 

DER Investment Allowed, Base Cost Scenario 

Total CO2 Emissions  327 327 328 326 398 337 

Grid Emissions 207 207 208 207 388 217 

Gas for Heating Emissions 120 120 120 120 9 120 
Percentage difference in 

total emissions compared 
to flat tariff - 0.0% 0.3% -0.3% 21.7% 3.1% 

DER Investment Allowed, 50% All-in Costs 

Total CO2 Emissions  233 114 311 119 398 337 

Grid Emissions 113 -6 191 0 388 217 

Gas for Heating Emissions 120 120 120 120 9 120 
       

Percentage difference in 
total emissions compared 

to flat tariff - -51.1% 33.5% -48.9% 70.8% 44.6% 
Note: The totals are the annual sums of emissions from each cluster, weighted by the number of households in each 
cluster. The aggregated load profiles for electricity and gas use under each design with 50% all-in cost structure is in the 
Appendix. 
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Table A3: Annual CO2 emissions in thousand metric tons under different tariff designs, with a $44/ton carbon tax on all 
emitting power generation and natural gas used for heating.  

  
Flat 
Tariff 

Time-of-
Use Tariff 
(TOU) 

Critical-
Peak 
Pricing 
Tariff 
(CPP) 

Real-
Time 
Pricing 
Tariff 
(RTP) 

Cost-
Reflective 
Tariff, 
Fixed 
residual 
recovery 
(CRRf) 

Cost-
Reflective 
Tariff, 
Volumetric 
residual 
recovery 
(CRRv) 

No DER Investment Allowed 

Total Emissions  271 270 272 269 318 269 

Grid Emissions 152 150 152 149 318 208 

Gas for Heating Emissions 120 120 120 120 0 62 
Percentage difference in total 

emissions compared to flat tariff with 
carbon tax - -0.4% 0.4% -0.7% 17.3% -0.7% 

Percentage difference in total 
emissions compared to same tariff 

design without a carbon tax (Table A2)  -17% -17% -17% -17% -24% -18% 

DER Investment Allowed, Base Cost Scenario 

Total Emissions  271 270 272 269 318 269 

Grid Emissions 152 150 152 149 318 208 

Gas for Heating Emissions 120 120 120 120 0 62 
Percentage difference in total 

emissions compared to flat tariff with 
carbon tax - -0.4% 0.4% -0.7% 17.3% -0.7% 

Percentage difference in total 
emissions compared to same tariff 

design without a carbon tax (Table A2)  -17% -17% -17% -17% -24% -18% 

DER Investment Allowed, 50% All-in-Costs 

Total Emissions  117 118 115 121 318 76 

Grid Emissions -3 -1 -4 1 318 49 

Gas for Heating Emissions 120 120 120 120 0 27 
Percentage difference in total 

emissions compared to flat tariff with 
carbon tax - 0.9% -1.7% 3.4% 171.8% -35.0% 

Percentage difference in total 
emissions compared to same tariff 

design without a carbon tax (Table A2)  -50% 4% -63% 2% -20% -77% 
Note: The totals are the annual sums of emissions from of each cluster, weighted by the number of households in each 
cluster. The aggregated load profiles for electricity and gas use under each design with 50% all-in cost structure is in 
the Appendix. 
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Table A4: Annual CO2 emissions in thousand metric tons under different tariff designs with a carbon tax applied only 
on wholesale electricity market 

  
Flat 
Tariff 

Time-of-
Use 
Tariff 
(TOU) 

Critical-
Peak 
Pricing 
Tariff 
(CPP) 

Real-
Time 
Pricing 
Tariff 
(RTP) 

Cost-
Reflective 
Tariff, 
Fixed 
residual 
recovery 
(CRRf) 

Cost-
Reflective 
Tariff, 
Volumetric 
residual 
recovery 
(CRRv) 

No DER Investment Allowed 

Total Emissions  271 270 272 269 302 276 

Grid Emissions 152 150 152 149 281 156 

Gas for Heating Emissions 120 120 120 120 22 120 
Percentage difference in total emissions 

compared to flat tariff with incomplete carbon tax - -0.4% 0.4% -0.7% 11.4% 1.8% 
Percentage difference in total emissions 

compared to same tariff design without a carbon 
tax (Table A2)  -17% -17% -17% -17% -24% -18% 

DER Investment Allowed, Base Cost Scenario 

Total Emissions  271 270 272 269 302 276 

Grid Emissions 152 150 152 149 281 156 

Gas for Heating Emissions 120 120 120 120 22 120 
Percentage difference in total emissions 

compared to flat tariff with incomplete carbon tax - -0.7% 1.0% -1.2% 12.4% -8.7% 
Percentage difference in total emissions 

compared to same tariff design without a carbon 
tax (Table A2)  -17% -17% -17% -17% -24% -18% 

DER Investment Allowed, 50% All-in-Costs 

Total Emissions  117 118 116 121 302 133 

Grid Emissions -3 -1 -4 1 281 13 

Gas for Heating Emissions 120 120 120 120 22 120 
Percentage difference in total emissions 

compared to flat tariff with incomplete carbon tax - 0.9% -0.9% 3.4% 158.1% 13.7% 
Percentage difference in total emissions 

compared to same tariff design without a carbon 
tax (Table A2)  -50% 4% -63% 2% -24% -61% 

Note: The totals are the annual sums of emissions from of each cluster, weighted by the number of households in each 
cluster. 
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Table A5. Tons of annual SO2 emissions under different tariff designs without carbon tax, base case 
scenario 

 Flat 
Tariff 

Time-of-
Use 
Tariff 

(TOU 

Critical-
Peak 
Pricing 
Tariff 

(CPP) 

Real-
Time 

Pricing 
Tariff 
(RTP) 

Cost-
Reflective 

Tariff, 
Fixed 

residual 
recovery 
(CRRf) 

Cost-
Reflective 

Tariff, 
Volumetric 

residual 
recovery 
(CRRv) 

No DER Investment Allowed 
Total Emissions 167 168 168 168 321 178 

Grid Emissions 166 167 167 168 321 178 
Gas for Heating 

Emissions 
1 1 1 1 0 1 

DER Investment Allowed, Base Cost Scenario 
Total Emissions 167 168 168 168 321 178 

Grid Emissions 166 167 167 168 321 178 
Gas for Heating 

Emissions 
1 1 1 1 0 1 

DER Investment Allowed, 50% All-in Costs 
Total Emissions 91 -4 154 1 321 178 

Grid Emissions 90 -5 153 0 321 178 
Gas for Heating 

Emissions 1 1 1 1 0 1 
Notes: The totals are the annual sums of emissions from each cluster, weighted by the number of households in each 
cluster. 
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Table A6. Tons of annual SO2 emissions under different tariff designs with complete carbon tax 

 Flat 
Tariff 

Time-of-
Use 
Tariff 

(TOU 

Critical-
Peak 
Pricing 
Tariff 

(CPP) 

Real-
Time 

Pricing 
Tariff 
(RTP) 

Cost-
Reflective 

Tariff, 
Fixed 

residual 
recovery 
(CRRf) 

Cost-
Reflective 

Tariff, 
Volumetri
c residual 
recovery 
(CRRv) 

No DER Investment Allowed 
Total Emissions 81 80 81 81 151 88 

Grid Emissions 80 79 81 81 151 87 
Gas for Heating 

Emissions 
1 1 1 1 0 1 

DER Investment Allowed, Base Cost Scenario 
Total Emissions 81 80 81 81 173 106 

Grid Emissions 80 79 81 81 173 106 
Gas for Heating 

Emissions 
1 1 1 1 0 0 

DER Investment Allowed, 50% All-in Costs 
Total Emissions 7 7 6 10 173 27 

Grid Emissions 6 7 6 10 173 27 
Gas for Heating 

Emissions 
1 1 1 1 0 0 

Notes: The totals are the annual sums of emissions from each cluster, weighted by the number of households 
in each cluster. 
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Table A7. Tons of annual SO2 emissions under different tariff designs with incomplete carbon tax 

 Flat 
Tariff 

Time-of-
Use 
Tariff 

(TOU) 

Critical-
Peak 
Pricing 
Tariff 

(CPP) 

Real-
Time 

Pricing 
Tariff 
(RTP) 

Cost-
Reflective 

Tariff, 
Fixed 

residual 
recovery 
(CRRf) 

Cost-
Reflective 

Tariff, 
Volumetric 

residual 
recovery 
(CRRv) 

No DER Investment Allowed 
Total Emissions 81 80 81 81 151 88 

Grid Emissions 80 79 81 81 151 87 
Gas for Heating 

Emissions 
1 1 1 1 0 1 

DER Investment Allowed, Base Cost Scenario 
Total Emissions 81 80 81 81 151 88 

Grid Emissions 80 79 81 81 151 87 
Gas for Heating 

Emissions 
1 1 1 1 0 1 

DER Investment Allowed, 50% All-in Costs 
Total Emissions 7 7 6 10 151 19 

Grid Emissions 6 7 6 10 151 18 
Gas for Heating 

Emissions 
1 1 1 1 0 1 

Notes: The totals are the annual sums of emissions from each cluster, weighted by the number of households in each 
cluster. 
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Table A8 Tons of annual NOx emissions under different tariff designs without a carbon tax 

 Flat 
Tariff 

Time-of-
Use Tariff 

(TOU) 

Critical-Peak 
Pricing Tariff 

(CPP) 

Real-Time 
Pricing 
Tariff 
(RTP) 

Cost-
Reflective 

Tariff, Fixed 
residual 
recovery 
(CRRf) 

Cost-
Reflective 

Tariff, 
Volumetric 

residual 
recovery 
(CRRv) 

No DER Investment Allowed 
Total Emissions 260 260 260 258 260 265 

Grid Emissions 138 138 139 137 251 143 
Gas for Heating 

Emissions 
122 122 122 122 9 122 

DER Investment Allowed, Base Cost Scenario 
Total Emissions 260 260 260 258 260 265 

Grid Emissions 138 138 139 137 251 143 
Gas for Heating 

Emissions 
122 122 122 122 9 122 

DER Investment Allowed, 50% All-in Costs 
Total Emissions 196 115 249 118 260 265 

Grid Emissions 74 -7 127 (4) 251 143 
Gas for Heating 

Emissions 
122 122 122 122 9 122 

Notes: The totals are the annual sums of emissions from each cluster, weighted by the number of households in each 
cluster. 

 

  



51 

 

Table A9. Tons of annual NOx emissions under different tariff designs with complete carbon tax 

 Flat 
Tariff 

Time-of-
Use 
Tariff 

(TOU) 

Critical-
Peak 
Pricing 
Tariff 

(CPP) 

Real-
Time 

Pricing 
Tariff 
(RTP) 

Cost-
Reflective 

Tariff, 
Fixed 

residual 
recovery 
(CRRf) 

Cost-
Reflective 

Tariff, 
Volumetric 

residual 
recovery 
(CRRv) 

No DER Investment Allowed 
Total Emissions 271 274 272 266 272 256 

Grid Emissions 149 152 150 144 272 194 
Gas for Heating 

Emissions 
122 122 122 122 0 63 

DER Investment Allowed, Base Cost Scenario 
Total Emissions 271 274 272 266 272 256 

Grid Emissions 149 152 150 144 272 194 
Gas for Heating 

Emissions 
122 122 122 122 0 63 

DER Investment Allowed, 50% All-in Costs 
Total Emissions 42 49 39 47 272 (30) 

Grid Emissions (80) (72) (83) (74) 272 (57) 
Gas for Heating 

Emissions 122 122 122 122 0 28 
Notes: The totals are the annual sums of emissions from each cluster, weighted by the number of households in each 
cluster. 
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Table A10. Tons of annual NOx emissions under different tariff designs with an incomplete carbon 

tax 

 Flat 
Tariff 

Time-of-
Use Tariff 

(TOU) 

Critical-Peak 
Pricing Tariff 

(CPP) 

Real-Time 
Pricing 
Tariff 
(RTP) 

Cost-
Reflective 

Tariff, Fixed 
residual 
recovery 
(CRRf) 

Cost-
Reflective 

Tariff, 
Volumetric 

residual 
recovery 
(CRRv) 

No DER Investment Allowed 
Total Emissions 271 272 272 266 265 268 

Grid Emissions 149 150 150 144 243 147 
Gas for Heating 

Emissions 
122 122 122 122 22 122 

DER Investment Allowed, Base Cost Scenario 
Total Emissions 271 272 272 266 265 268 

Grid Emissions 149 150 150 144 243 147 
Gas for Heating 

Emissions 
122 122 122 122 22 122 

DER Investment Allowed, 50% All-in Costs 
Total Emissions 42 49 39 47 265 57 

Grid Emissions (80) (72) (83) (74) 243 (65) 
Gas for Heating 

Emissions 122 122 122 122 22 122 
Notes: The totals are the annual sums of emissions from each cluster, weighted by the number of households in each 
cluster. 


